

### **REPORT**

## Keddleston Groundwater Study - Phase 2

Electoral Area C, Regional District of North Okanagan, BC

Submitted to:

## **Regional District of North Okanagan**

Attention: Alec Busby, Assistant Utilities Engineer 9848 Aberdeen Road Coldstream, BC V1B 2K9

Submitted by:

### Golder Associates Ltd.

590 McKay Avenue, Suite 300, Kelowna, British Columbia, V1Y 5A8, Canada



# **Distribution List**

e-copy - Regional District of North Okanagan

e-copy - Golder Associates Ltd.



i

## **Executive Summary**

As requested by the Regional District of North Okanagan (RDNO), Golder Associates Ltd. (Golder), a member of WSP, conducted the next phase of groundwater study for the Keddleston area (hereafter referred to as the "Phase 2 Groundwater Study"). Building on a water balance study that Golder (2020) completed for the Keddleston area, the purpose of the Phase 2 Groundwater Study was to assess the groundwater supply potential in two key areas where potential future residential development may occur; specifically, the central portion of the Keddleston area, where Aquifer 349 (confined sand and gravel aquifer) and Aquifer 351 (bedrock aquifer) overlap, and the western portion of the Keddleston area that is underlain by Aquifer 351, herein referred to as "the Study Area". The overall objective of the Phase 2 Groundwater Study was to support the RDNO in making informed decisions regarding sustainable development in the Keddleston area with respect to groundwater supply.

The scope of work for the Phase 2 Groundwater Study included:

- a well survey to assess the water supply wells in the Keddleston area and the associated groundwater withdrawals from local aquifers
- a field reconnaissance and establishment of a monitoring well network for long-term groundwater level monitoring
- field investigations including: instrumenting monitoring wells and conducting groundwater level monitoring; conducting constant rate pumping tests for two monitoring wells; collecting groundwater samples at select monitoring wells and surveying the x,y coordinates of the monitoring wells
- analysis of the results and preparation of a report presenting a refined understanding of groundwater conditions in the Study Area and providing recommendations for the RDNO to support sustainable development in the Keddleston area

Based on the results of the survey and monitoring program, the groundwater supply potential of bedrock Aquifer 351 is inferred to be limited in the area of Wilson-Jackson-upper Keddleston-Clearview Roads and may be limited at the west (downgradient) and east (upgradient) ends of the Study Area. The bedrock aquifer (Aquifer 351) in these areas is heterogeneous, as reflected by the variability in yields and water level responses of monitored wells, and the cumulative effects of groundwater use (i.e., pumping) is inferred to influence groundwater levels in the western portion of the aquifer.

Golder's 2020 study assessed that Aquifer 349 had a higher relative potential to supply groundwater for future development compared to Aquifer 351; however, the findings of the Phase 2 Groundwater Study show that the potential for a sustainable groundwater supply is limited along the west-central edge of Aquifer 349, where water levels in the aquifer were monitored, and may be limited along the northwest edge of the aquifer, based on survey responses from local residences. Furthermore, the groundwater supply potential of the shallow alluvial deposits associated with drainage areas of the tributaries of BX Creek may be limited; these deposits were not included in the water balance in Golder's 2020 study and water levels in these deposits were not monitored during the Phase 2 Groundwater Study.



Golder recommends that the groundwater level and water quality program is continued for the existing monitoring well network, augmented with additional wells completed in the shallow alluvial deposits along tributaries of BX Creek, to establish baseline conditions and provide the basis to assess seasonal patterns and long-term trends in water levels and water quality. The data from the monitoring program can then be used to enable a more thorough assessment of water level responses relative to seasonal recharge of precipitation, groundwater use and aquifer properties. Development of a numerical flow model will provide the technical basis to assess current and potential future groundwater use in the Study Area, along with the potential implications of climate change. Due to the uncertainty regarding groundwater availability in the Study Area, it is recommended that the additional groundwater monitoring is conducted and the numerical model is developed before the RDNO considers accepting new applications for development.

The RDNO should assess regulatory options to manage development potential in the Study Area, including the following:

- The RDNO Subdivision Servicing Bylaw 2600 (RDNO, 2013) and RDNO Building Bylaw 2670 (RDNO, 2015) should be strengthened to require a more comprehensive hydrogeological assessment of aquifer conditions that demonstrates a sustainable potable water supply is available. Hydrogeological assessments should be included pumping tests that are conducted in accordance with the provincial *Guide to Conducting Pumping Tests* (Pumping Test Guide), including minimum durations for pumping tests based on aquifer type and subsequent recovery monitoring, monitoring of at least one observation well that is completed in the same aquifer unit, and conducting tests during part of the year when groundwater levels are lowest.
- Hydrogeological assessments should be signed and stamped by a qualified professional and include, for each well that is proposed to be used for water supply, analysis and interpretation of at least one year of continuous groundwater level monitoring data and a pumping test that satisfies the requirements above.
- Subdivision and development approvals, including existing and future development applications, should consider a phased approach to development to support sustainable development with respect to groundwater supply. Where applications to the RDNO include more than one dwelling (and therefore more than one well) or are for multiphase developments, the pumping tests should be conducted simultaneously for all wells included in the application.
- The RDNO should also consider designating Aquifer Protection Development Permit Areas (DPAs) to control and limit development in areas where groundwater availability issues have been identified; approval of development permits in the DPAs should be contingent upon specific criteria that should include requirements for groundwater monitoring, and implementation of site-specific groundwater protection measures to limit site disturbance and impervious surfaces, preserve natural soils and vegetation, and require water conservation measures.

Non-regulatory groundwater protection measures should also be considered to protect water supplies for existing and future groundwater users as well as environmental flow needs (EFNs) in surface water bodies. Public education and outreach programs can be used to educate existing and new well owners about the importance of groundwater conservation and to provide them with the tools to assess current water use, evaluate potential groundwater conservation opportunities and implement appropriate measures.



# **Table of Contents**

| 1.0 | INTRODUCTION |                                                         |    |  |
|-----|--------------|---------------------------------------------------------|----|--|
| 2.0 | BACK         | GROUND                                                  | 2  |  |
|     | 2.1          | General Comments                                        | 2  |  |
|     | 2.2          | Hydrogeological Setting                                 | 2  |  |
|     | 2.3          | Golder's 2007 Study                                     | 4  |  |
|     | 2.4          | Golder's 2020 Study                                     | 4  |  |
| 3.0 | SCOP         | E OF WORK                                               | 6  |  |
|     | 3.1          | Well Survey                                             | 6  |  |
|     | 3.2          | Field Reconnaissance                                    | 6  |  |
|     | 3.3          | Field Investigations                                    | 6  |  |
|     | 3.4          | Reporting                                               | 6  |  |
| 4.0 | METH         | ODS                                                     | 8  |  |
|     | 4.1          | Well Survey                                             | 8  |  |
|     | 4.2          | Field Reconnaissance and Instrumentation                | 8  |  |
|     | 4.3          | Water Level Monitoring                                  | 9  |  |
|     | 4.3.1        | Manual Water Elevations                                 | 9  |  |
|     | 4.3.2        | Datalogger Installations                                | 9  |  |
|     | 4.4          | Pumping Tests                                           | 11 |  |
|     | 4.5          | Groundwater Sampling                                    | 12 |  |
|     | 4.6          | GPS Survey                                              | 13 |  |
|     | 4.7          | Quality Assurance/Quality Control                       | 13 |  |
|     | 4.7.1        | Field QC Program                                        | 13 |  |
|     | 4.7.2        | Laboratory QA/QC Program                                | 14 |  |
| 5.0 | SUPP         | LEMENTARY INFORMATION USED IN PHASE 2 GROUNDWATER STUDY | 15 |  |
|     | 5.1.1        | Aquifer 351 Transmissivity Data                         | 15 |  |
|     | 5.1.2        | Water Quality Data – McLennan Road                      | 15 |  |



|     | 5.1.3   | Reports for Other Properties Within Study Area                | 15 |
|-----|---------|---------------------------------------------------------------|----|
| 6.0 | INVE    | STIGATION FINDINGS                                            | 16 |
|     | 6.1     | Well Survey                                                   | 16 |
|     | 6.1.1   | Well Survey Responses                                         | 16 |
|     | 6.1.2   | Supplemental Well Information                                 | 17 |
|     | 6.2     | Water Level Trends                                            | 19 |
|     | 6.3     | Groundwater Flow Directions and Hydraulic Gradients           | 21 |
|     | 6.3.1   | Regional Keddleston Area                                      | 21 |
|     | 6.3.2   | Study Area                                                    | 21 |
|     | 6.4     | Aquifer Characteristics                                       | 22 |
|     | 6.4.1   | Hydraulic Conductivity                                        | 22 |
|     | 6.4.2   | Hydraulic Connectivity and Well Interference                  | 23 |
|     | 6.5     | Groundwater Quality                                           | 28 |
|     | 6.5.1   | General Water Chemistry                                       | 28 |
|     | 6.5.1.1 | 1 Water Types                                                 | 28 |
|     | 6.5.1.2 | Comparison to CDWQG                                           | 29 |
|     | 6.5.2   | Isotopes of Water                                             | 30 |
| 7.0 | DISC    | USSION OF GROUNDWATER CONDITIONS                              | 34 |
|     | 7.1     | General Groundwater Conditions                                | 34 |
|     | 7.2     | Groundwater Supply Potential                                  | 36 |
|     | 7.2.1   | Wilson-Jackson Road, Upper Keddleston Road and Clearview Road | 36 |
|     | 7.2.2   | Drainage Areas Along Tributaries of BX Creek                  | 38 |
|     | 7.2.3   | Confined Aquifer 349 at South End of Study Area               | 39 |
|     | 7.2.4   | West (Downgradient) End of Study Area                         | 40 |
|     | 7.2.5   | East (Upgradient) End of Study Area                           | 42 |
| 8.0 | CON     | CLUSIONS                                                      | 44 |
| 9.0 | RECO    | DMMENDATIONS                                                  | 45 |
|     | 9.1     | Long-Term Monitoring and Refined Water Balance Analyses       | 45 |
|     | 9.2     | Groundwater Protection and Management Measures                | 46 |



|      | 9.2.1                     | Regulatory Considerations                                                                                                                                                                                                                                                                                                                                                                                                                      | .46  |
|------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | 9.2.1.1                   | Revisions to Evidence of Potable Water Supply Requirements in Bylaws                                                                                                                                                                                                                                                                                                                                                                           | .46  |
|      | 9.2.1.2                   | Phased Approach to New Groundwater Use                                                                                                                                                                                                                                                                                                                                                                                                         | .47  |
|      | 9.2.1.3                   | Development Permit Areas                                                                                                                                                                                                                                                                                                                                                                                                                       | .48  |
|      | 9.2.2                     | Non-Regulatory Considerations                                                                                                                                                                                                                                                                                                                                                                                                                  | .48  |
| 10.0 | LIMITA                    | .TIONS                                                                                                                                                                                                                                                                                                                                                                                                                                         | .49  |
| 11.0 | CLOS                      | JRE                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 50 |
| 12.0 | REFER                     | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                                         | .51  |
| TAE  | SLES                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Tabl | e 1: Data                 | alogger Installation Summary                                                                                                                                                                                                                                                                                                                                                                                                                   | .10  |
| Figu | re A: Be                  | drock Geology of Study Area (BCGS 2022)                                                                                                                                                                                                                                                                                                                                                                                                        | 3    |
| Figu | ele                       | ily precipitation for the lower elevation Vernon Auto weather station (blue line) and higher vation Vernon Silver Star Lodge weather station between 2019 and 2021 (Government of nada, 2022)                                                                                                                                                                                                                                                  | 18   |
| Figu | in <i>A</i><br>pur<br>eac | p taken from Carmichael et al. (2009) showing 11 bedrock wells (red dot with label) completed Aquifer 351 where hydraulic conductivity and transmissivity values were estimated based on apping test data re-analyzed by Carmichael et al. (2009). Well label (i.e., 82400) is the WTN for the 11 bedrock wells; shading of WTNs is discussed in report. Stars represent the two drock wells tested as part of this Phase 2 Groundwater Study. | 23   |
| Figu |                           | oundwater elevations at bedrock wells 026, 840 and 726 on Wilson-Jackson Road during the nitoring period, including during the pumping test conducted at well 726.                                                                                                                                                                                                                                                                             | 24   |
| Figu |                           | oundwater elevations at bedrock wells 704, 180 and 000 during the monitoring period, uding during the pumping test conducted at well 180.                                                                                                                                                                                                                                                                                                      | . 25 |
| Figu | re F: Gro                 | oundwater elevations at bedrock wells 120 and 189 during the monitoring period                                                                                                                                                                                                                                                                                                                                                                 | .26  |
| Figu | re G: Gr<br>896           | oundwater elevations at bedrock wells 896-50394 and well 000 (left plot) and bedrock wells<br>6-50394 and well 120 (right plot) during the monitoring period                                                                                                                                                                                                                                                                                   | .27  |
| Figu |                           | oundwater elevations at confined sand and gravel wells 021 and 746 during the monitoring iod.                                                                                                                                                                                                                                                                                                                                                  | 27   |
| Figu | Pha                       | er diagram showing water types for groundwater samples collected by Golder as part of the ase 2 Groundwater Study (coloured symbols) and samples collected by a property owner at ir wells on McLennan Road (grey symbols).                                                                                                                                                                                                                    | 29   |
| Figu |                           | I - d18O cross plot showing the isotopic compositions of groundwater samples collected during Phase 2 Groundwater Study.                                                                                                                                                                                                                                                                                                                       | .32  |
| Figu |                           | plan showing the distribution of $\delta^2$ H values (‰) of groundwater samples collected across the dy Area during the Phase 2 Groundwater Study                                                                                                                                                                                                                                                                                              | 33   |



| Figure L: | Plan showing water level trends at monitored wells that were actively pumping during the Phase 2 Groundwater Study. Refer to each individual chart in Appendix C for further details                                                                                                                                                                                                                                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure M  | : Red circle is the approximate area of Wilson-Jackson Road, upper Keddleston Road and Clearview Road where groundwater availability or well supply issues were noted by Golder during this Phase 2 Groundwater Study or were reported to the RDNO.                                                                                                                                                                                                              |
| Figure N  | : Light green circle is the approximate area of Chew Road, Jordashe Road, Wilson-Jackson Road and Clearview Road where groundwater availability and groundwater sustainability issues were reported to the RDNO.                                                                                                                                                                                                                                                 |
| Figure O  | : Dark green circle is the approximate area at the west central edge of Aquifer 349 where groundwater availability issues were noted by Golder during this Phase 2 Groundwater Study40                                                                                                                                                                                                                                                                           |
| Figure P  | : Purple circle is the approximate area at the west (downgradient) end of the Study Area where groundwater availability issues were noted by Golder during this Phase 2 Groundwater Study42                                                                                                                                                                                                                                                                      |
| Figure Q  | : Blue circle is the approximate area at the east (upgradient) end of the Study Area where groundwater availability or well supply issues were noted by Golder during this Phase 2  Groundwater Study or were reported to the RDNO                                                                                                                                                                                                                               |
| TABLES    | s (attached)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 2:  | Manual Groundwater Elevations                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 3:  | Analytical Groundwater Quality Results                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 4:  | Analytical Groundwater Isotope Results                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FIGURE    | S S                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure A  | : Bedrock Geology of Study Area (BCGS 2022)                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure B  | Daily precipitation for the lower elevation Vernon Auto weather station (blue line) and higher elevation Vernon Silver Star Lodge weather station between 2019 and 2021 (Government of Canada, 2022)                                                                                                                                                                                                                                                             |
| Figure C  | : Map taken from Carmichael et al. (2009) showing 11 bedrock wells (red dot with label) completed in Aquifer 351 where hydraulic conductivity and transmissivity values were estimated based on pumping test data re-analyzed by Carmichael et al. (2009). Well label (i.e., 82400) is the WTN for each of the 11 bedrock wells; shading of WTNs is discussed in report. Stars represent the two bedrock wells tested as part of this Phase 2 Groundwater Study. |
| Figure D  | : Groundwater elevations at bedrock wells 026, 840 and 726 on Wilson-Jackson Road during the monitoring period, including during the pumping test conducted at well 72624                                                                                                                                                                                                                                                                                        |
| Figure E  | : Groundwater elevations at bedrock wells 704, 180 and 000 during the monitoring period, including during the pumping test conducted at well 18025                                                                                                                                                                                                                                                                                                               |
| Figure F  | Groundwater elevations at bedrock wells 120 and 189 during the monitoring period26                                                                                                                                                                                                                                                                                                                                                                               |
| Figure G  | : Groundwater elevations at bedrock wells 896-50394 and well 000 (left plot) and bedrock wells 896-50394 and well 120 (right plot) during the monitoring period.                                                                                                                                                                                                                                                                                                 |
| Figure H  | : Groundwater elevations at confined sand and gravel wells 021 and 746 during the monitoring period.                                                                                                                                                                                                                                                                                                                                                             |



| J | Piper diagram showing water types for groundwater samples collected by Golder as part of the Phase 2 Groundwater Study (coloured symbols) and samples collected by a property owner at their wells on McLennan Road (grey symbols).              | .29 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | d2H - d18O cross plot showing the isotopic compositions of groundwater samples collected during the Phase 2 Groundwater Study.                                                                                                                   | .32 |
|   | Site plan showing the distribution of δ <sup>2</sup> H values (‰) of groundwater samples collected across the Study Area during the Phase 2 Groundwater Study                                                                                    | .33 |
|   | Plan showing water level trends at monitored wells that were actively pumping during the Phase 2 Groundwater Study. Refer to each individual chart in Appendix C for further details                                                             | 35  |
| J | Red circle is the approximate area of Wilson-Jackson Road, upper Keddleston Road and Clearview Road where groundwater availability or well supply issues were noted by Golder during this Phase 2 Groundwater Study or were reported to the RDNO | .37 |
|   | Light green circle is the approximate area of Chew Road, Jordashe Road, Wilson-Jackson Road and Clearview Road where groundwater availability and groundwater sustainability issues were reported to the RDNO.                                   | .39 |
|   | Dark green circle is the approximate area at the west central edge of Aquifer 349 where groundwater availability issues were noted by Golder during this Phase 2 Groundwater Study                                                               | .40 |
|   | Purple circle is the approximate area at the west (downgradient) end of the Study Area where groundwater availability issues were noted by Golder during this Phase 2 Groundwater Study                                                          | .42 |
|   | Blue circle is the approximate area at the east (upgradient) end of the Study Area where groundwater availability or well supply issues were noted by Golder during this Phase 2 Groundwater Study or were reported to the RDNO                  | .43 |

## FIGURES (attached)

- Figure 1: Study Area
- Figure 2: Catchment Areas and Aquifer Boundaries
- Figure 3: Registered Water Well Classified By Aquifer
- Figure 4: Cross-Section A-A'
- Figure 5: Cross-Section B-B'
- Figure 6: Groundwater Availability



### **APPENDICES**

### **APPENDIX A**

Well Survey

## **APPENDIX B**

Well Records

### **APPENDIX C**

Water Level Trend Charts

## **APPENDIX D**

**Pumping Test Analysis** 

## **APPENDIX E**

Laboratory Reports



#### 1.0 INTRODUCTION

As requested by the Regional District of North Okanagan (RDNO), Golder Associates Ltd. (Golder), a member of WSP, conducted the next phase of groundwater study for the Keddleston area (hereafter referred to as "Phase 2 Groundwater Study"). The purpose of the Phase 2 Groundwater Study was to assess the groundwater supply potential in two key areas where future residential development may occur; specifically, the central portion of the Keddleston area, where Aquifer 349 (confined sand and gravel aquifer) and Aquifer 351 (bedrock aquifer) overlap, and the western portion of the Keddleston area that is underlain by Aquifer 351. The study included an assessment of aquifer characteristics, an assessment of seasonal changes to groundwater levels including the potential effects of seasonal pumping activities on groundwater levels, and well interference.

Authorization to proceed with this study was provided by Mr. Alec Busby of the RDNO on 30 September 2020.

For the Phase 2 Groundwater Study, a Study Area was defined and included the area encompassed by Aquifer 351, and by the portion of Aquifer 349 that is present north of BX Creek and that overlies Aquifer 351 (as shown on Figure 1, attached).

The Study Area is a semi-rural residential area located immediately northeast of Vernon, BC (Figure 1). The Study Area encompasses portions of Electoral Areas "B" and "C" of the RDNO. Ongoing development of the Study Area has occurred through the subdivision of larger sized lots, resulting in an increased density of domestic water supply wells and an overall increase in groundwater extraction. The overall objective of the Phase 2 Groundwater Study was to support the RDNO in making informed decisions on sustainable development in the Keddleston area with respect to groundwater supply.



#### 2.0 BACKGROUND

## 2.1 General Comments

Domestic water supply to properties within the Study Area is primarily via individual privately owned water supply wells, except for approximately 28 homes in the Paradise Ridge Community at the east end of the Study Area which are serviced by the Aspen Water Utility. The Aspen Water Utility supplies water via two groundwater wells that are located in the area of Aspen Road and Jackpine Road; one well is inferred to be completed in bedrock Aquifer 351 (this bedrock well was monitored during the Phase 2 Groundwater Study; refer to Section 4.2) and the other in Aquifer 349.

There are reports of property owners (the number of which is not known) with private domestic supplies that have not been able to obtain sufficient water supply from the well on their property, as rate of groundwater use is greater than the rate at which the well can be pumped. In response, some property owners have installed large cisterns to store water when the demand is less than supply from the well, while others import water via water truck either to supplement their existing groundwater supply or to provide 100% of their water supply (RDNO personnel, pers. comm., October 2021).

Hydrogeological assessments completed by various consultants since circa 2010 for single lot developments in the Keddleston area report that wells that have been completed in Aquifers 349 and 351, and in other shallow, water-bearing alluvial deposits within drainage courses of the tributaries of BX Creek, generally meet the RDNO's proof of water requirements of 6.55 m³/day (RDNO 2013; RDNO, 2015). It is understood that this proof of water requirement is intended to provide assurance that adequate water is available for residential properties at the time of development and is higher than the anticipated water use.

## 2.2 Hydrogeological Setting

A detailed description of the hydrogeology of the Keddleston area is described in Golder (2020). Select information relevant to the Phase 2 Groundwater Study is presented below:

- The Study Area is located east of the Swan Lake valley bottom, along the western flank of Silver Star Mountain. BX Creek flows from the east, from its origin in Silver Star Provincial Park, within a relatively narrow, steep-sided valley along the south side of the Study Area. BX Creek exits to the southwest of the Study Area into the Swan Lake valley bottom and ultimately into Swan Lake (Figure 1). Within the Study Area, several smaller creeks flow from the north and join BX Creek, including Keddleston and Abbott Creeks. Other unnamed creeks are present in the northwest portion of the Study Area; these generally drain to the west, towards the Swan Lake valley bottom.
- The catchment area that is inferred to receive precipitation upstream of, and within, the Study Area and provide recharge to the aquifers within the Study Area includes the provincially mapped BX Creek topographic catchment as well as a predicted catchment area in the northwest corner of the Study Area (termed "northwest catchment area"; refer to Golder [2020]), as shown on Figure 1.
- Based on the most recent bedrock mapping available for the area, the Study Area is underlain by Proterozoic to Paleozoic undivided metamorphic rocks of the Shuswap Assemblage, with sedimentary rocks of the Nicola Group to the south of the Study Area and intrusive rocks to the north of the Study Area (BCGS 2022) (see Figure A). Based on review of well records for well across the Study Area, the bedrock has been described by drillers as consisting of metamorphic, sedimentary, and/or intrusive (granitic) rocks. Faults have been mapped east and west of the Study Area.



The bedrock in the Study Area is blanketed by a layer of unconsolidated glacial deposits comprising mostly till with some water-bearing sand, gravel and silt layers, including a confined water-bearing sand and gravel unit between the base of the till unit and the top of bedrock surface. Alluvial deposits are inferred to be present within drainage courses of tributaries of BX Creek and smaller streams within the Study Area.

- Where the unconsolidated and confined sand and gravel deposits overly bedrock, groundwater resources may be found in the sand and gravel deposits (Aquifer 349; registered water wells in Aquifer 349 are shown as green on Figure 2) and/or in bedrock fractures within the underlying bedrock mass (Aquifer 351; registered water wells in Aquifer 351 are shown as purple on Figure 2). Groundwater resources may also be found in shallow (unconfined) alluvial deposits associated with tributaries of BX Creek and smaller streams within the Study Area. Groundwater levels and/or quality in the alluvial deposits were not monitored during the Phase 2 Groundwater Study.
- Natural recharge to the Aquifer 349 is inferred to be predominantly from infiltration of precipitation and snowmelt along the edges of the aquifer on the sides of the valley, with some recharge contribution from bedrock inflows and stream leakage of BX Creek and its tributaries. Natural recharge to Aquifer 351 is inferred to be predominantly from infiltration of precipitation and snowmelt at upstream areas within the catchment, with some recharge contribution from leakage of the groundwater from the overlying unconsolidated aquifer (where Aquifer 349 overlies Aquifer 351) and stream leakage.



Figure A: Bedrock Geology of Study Area (BCGS 2022).

## 2.3 Golder's 2007 Study

In March 2007, Golder completed a groundwater availability study as part of a larger water supply strategic plan for the RDNO (Associated Engineering 2007), hereafter referred to as "Golder's 2007 study". Golder's 2007 study focused on Aquifer 349 and a portion of Aquifer 351. At the time of Golder's 2007 study, anecdotal reports from residents in the Keddleston area suggested that many of the existing water wells had been chronically or periodically under-performing with respect to sustainable yield and residents with wells in Aquifer 351 reported more concerns with water quantity and quality than did residents with wells in Aquifer 349. Golder's 2007 study predicted that Aquifers 349 and 351 had limited capacity for further groundwater development, based on estimated water balance parameters (groundwater recharge and extraction) applied at the time of the 2007 study. As relatively low yields were reported for wells that were completed in these aquifers, it was inferred that development of a large capacity well, or well field, would not be feasible in either aquifer for the purpose of a community water supply.

## 2.4 Golder's 2020 Study

In 2020, Golder completed a hydrogeological assessment for the Keddleston area for the purpose of updating the previous (2007) conceptual hydrogeological model for the Keddleston Area, updating the previous annual water balance assessment, and assessing the groundwater availability and development potential of the Keddleston area from the perspective of a water balance (hereafter referred to as "Golder's 2020 study"). Golder's 2020 study was intended to provide the RDNO with information regarding future sustainable groundwater development that would support sustainable growth in the area, including the feasibility of future individual wells and/or a community water system. The study did not consider environmental flow needs (EFNs) in surface water bodies. Golder's 2020 study included a study area that encompassed the full extents of Aquifers 349 and 351, and bedrock Aquifer 350.

Based on the results of Golder's 2020 study, the following interpretations were made:

### Aquifer 349

- Based on the water balance estimates, the confined sand and gravel Aquifer 349 was assigned a low to medium risk with respect to groundwater availability (i.e., current predicted groundwater withdrawals were less than half of the estimated recharge to the aquifer under lower- and upper-bound scenarios<sup>1</sup>), and groundwater availability was interpreted to be relatively higher in Aquifer 349 than in Aquifer 351 and 350; however, the results were general and did not reflect local scale factors.
- The potential for additional groundwater development of Aquifer 349 with individual domestic wells was generally considered to be feasible throughout the aquifer; but thought to be limited by aquifer thickness and/or absence of the aquifer deposits in some locations.

<sup>&</sup>lt;sup>1</sup> In Golder's 2020 study, lower-bound scenarios considered average water use and irrigation of half of the Agricultural Land Reserve (ALR)-zoned lands, and upper-bound scenarios considered the RDNO proof-of-water water use (i.e., 6.55 m³/day) and irrigation of all the ALR-zoned lands. Average water use was estimated to be 1.76 m3/day, based on an average indoor residential use of 0.15 m3/day and a year-round average outdoor residential landscaping use of 0.525 m3/day/person (OBWB 2009) and assuming an average number of persons per household of 2.6 (Census 2016; North Okanagan Electoral Area C). Irrigation rates were estimated using the online BC Agriculture water calculator (http://www.bcagriculturewatercalculator.ca/), assuming a forage crop, loam soils and sprinkler irrigation system, and an irrigation period of 140 days per year.



4

#### Aguifer 351

Based on the water balance estimates, bedrock Aquifer 351 was assigned a medium to high risk with respect to groundwater availability; however, this was dependent on the residential water use and extent of irrigation on lands overlying Aquifer 351. When the lower-bound estimates of residential water use and irrigation use were applied to the water balance for Aquifer 351, approximately 49% and 60% of water was predicted to be withdrawn from the aquifer relative to groundwater recharge, based on the current scale of development and full buildout, respectively. However, when the upper-bound estimates of residential water use and irrigation use were applied, approximately 147% and 188% of water was predicted to be withdrawn from the aquifer relative to groundwater recharge, based on the current scale of development and full buildout, respectively. The results indicated that at the higher extraction rates more water is withdrawn from the aquifer than is being recharged.

■ The potential for additional groundwater development of Aquifer 351 was generally considered to be limited, with areas at the downgradient (west) end of the aquifer having potential to supply groundwater to future developments in that part of the Study Area.

#### Aquifer 350

- Based on the water balance estimates, bedrock Aquifer 350 was assigned a high risk with respect to groundwater availability under both the lower- and upper-bound scenarios. When the lower-bound estimates of residential water use and irrigation use were applied to the water balance in Aquifer 350, approximately 77% and 87% of water was predicted to be withdrawn from the aquifer relative to groundwater recharge, based on the current scale of development and full buildout, respectively. However, when the upper-bound estimates of residential water use and irrigation use are applied, approximately 217% and 256% of water is predicted to be withdrawn from the aquifer relative to groundwater recharge, based on the current scale of development and full buildout, respectively; indicative that more water is withdrawn from the aquifer than is being recharged.
- Bedrock Aquifer 350 was considered to have limited to no capacity for groundwater development, except potentially in the areas of Dixon Dam Road along the south-central boundary of the 2020 study area, and Ranch Road at the south end of the Study Area. Based on the predicted limited to no capacity, Aquifer 350 was not included as part of this Phase 2 Groundwater Study and is not discussed further in this report.

The water balance in Golder's 2020 study did not partition available water into shallow, water-bearing alluvial deposits that are present within drainage courses of the tributaries of BX Creek and smaller streams within the Study Area and that have not been mapped as aquifers by the province. When considering recharge to these alluvial deposits, the groundwater availability in Aquifer 349 and Aquifer 351 is anticipated to be less than estimated in Golder's 2020 study.

Golder's 2020 study was intended to assess overall groundwater development potential at the regional scale and to identify which aquifer, if any, could support future development through individual wells and/or a community water system. While the water balance estimates indicated that Aquifer 349 had a higher relative potential to supply future development to individual properties (through individual wells) compared to Aquifer 351, it was noted that a detailed hydrogeological assessment with appropriately designed pumping tests would be required on a lot-by-lot basis to confirm groundwater availability, sustainability and potential well interference between neighbouring well users, and to assess EFNs in nearby surface water bodies.



## 3.0 SCOPE OF WORK

The scope of work for the Phase 2 Groundwater Study consisted of a well survey, field reconnaissance, field investigations and reporting. These tasks are described in detail below:

## 3.1 Well Survey

A well survey was conducted for the following purposes:

- to confirm the number of groundwater well users in the Keddleston area and the distribution of the current water supply wells within the Keddleston aquifers
- to gain a better understanding of groundwater use from individual wells and the potential groundwater withdrawals from each aquifer
- to establish a monitoring well network for long-term monitoring of groundwater levels

#### 3.2 Field Reconnaissance

A field reconnaissance was conducted by a Golder field technician and an RDNO technician to confirm that the water wells selected based on the results of the well survey were suitable for groundwater monitoring and/or testing.

## 3.3 Field Investigations

Field investigations were conducted throughout 2021 and included the following tasks:

- instrumenting selected water wells for long-term monitoring of water levels
- obtaining manual water level measurements at the monitored water wells on a quarterly basis
- conducting constant rate pumping tests at two water wells
- collecting groundwater samples at selected water wells
- surveying the x,y coordinates and elevation of each water well to allow for groundwater level measurements to be converted to groundwater elevations for spatial comparison

## 3.4 Reporting

Following the field investigations, Golder prepared this report summarizing the collected groundwater level data, pumping test results and water quality data in the context of groundwater supply potential within the two key areas. The report provides the following:

- a summary of the field methods used to complete the field investigations and the QA/QC methods incorporated into the work
- a summary and interpretation of groundwater levels with respect to seasonal precipitation and seasonal pumping activities, pumping test analyses, including well interference, and groundwater quality results



- map(s) showing the locations of the monitoring wells and inferred groundwater flow directions
- map(s) showing updated aquifer productivity areas and areas of groundwater supply potential
- refinement of the existing conceptual site model for the Keddleston area (Golder, 2020), including an update to groundwater conditions and aquifer characteristics, and an assessment of groundwater supply potential for the two key areas

recommendations for further assessment of groundwater conditions in the Keddleston area



#### 4.0 METHODS

The following sections describe the methods used to complete the well survey and the field portions of the work.

## 4.1 Well Survey

A well survey form was developed by Golder in conjunction with RDNO Project personnel. The RDNO sent the well survey form to a total of 306 properties in the Phase 2 Groundwater Study Area. A copy of the well survey form is provided in Appendix A.

A total of fifty-six (56) properties, or approximately 18% of the 306 properties that received the survey, provided responses to RDNO. The locations of these properties are illustrated on Figure 3.

#### 4.2 Field Reconnaissance and Instrumentation

Following review of the survey responses, and corroboration of the survey responses with a well record obtained from either the provincial database or the well owner, twenty (20) properties were identified for potential instrumentation of the water well for long-term groundwater level monitoring. A site reconnaissance was conducted by Golder and RDNO personnel on 24 and 25 March 2021 and on 23 June 2021 to view these properties and to assess the wells and identify potential wellhead constraints or site access issues that could influence installation of instrumentation.

Based on the findings of the site reconnaissance, a shortlist of fifteen (15) properties was developed for subsequent instrumentation of water wells for the Phase 2 Groundwater Study. Fourteen (14) of the properties contained one water well that was available for monitoring and one property contained two water wells available for monitoring, for a total of sixteen (16) water wells. The locations of the 16 wells are listed in Table 1 of Section 4.3.2 and shown on Figure 4. The well records for the 16 wells are provided in Appendix B. The wells selected for instrumentation provided spatial and altitudinal representation of locations across the Study Area and allowed for assessment of groundwater levels at varying depths within two broad geological units (confined sand and gravel Aquifer 349, and bedrock Aquifer 351) and within different bedrock types (inferred based on bedrock descriptions in the well records).

The instrumentation consisted of the following:

- In wells with existing pumps, a 2-inch (0.05 m) diameter PVC drop tube was manually placed and secured in each well, where the bottom of the drop tube was placed above the well pump. A datalogger was suspended in each drop tube using a wire cable.
- In wells with no pump, a datalogger was suspended with a wire cable in the well casing at a depth close to the bottom of the well.

The instrumentation was installed with the assistance of Monashee Aquifer Testing and Well Pump Services (Monashee), as summarized in Section 4.3.2. The datalogger network is discussed in detail in Table 1, Section 4.3.2.



## 4.3 Water Level Monitoring

### 4.3.1 Manual Water Elevations

Water levels were measured manually by Golder and/or RDNO field personnel at the 16 water wells during quarterly monitoring events conducted on the following dates:

Q2 2021: 18 May, 1 and 2 June, and 23 June

Q3 2021: 23 July, and 11 and 12 August

Q4 2021: 5 October, and 6 and 7 December

Water level measurements were taken using a handheld water level probe and read from the top of the well casing at each location.

## 4.3.2 Datalogger Installations

Solinst Levelogger® Edge Model 3001 dataloggers were deployed in the 16 water wells. The datalogger network is summarized in Table 1. A Barologger® Edge Model 3001 barologger was hung outside of a secure building in the east portion of the Study Area. During water level monitoring events in May though December 2021 (Section 4.3.1), data from the dataloggers and the barologger were downloaded. During subsequent data processing, datalogger data were corrected for barometric pressure and calibrated with manual water level measurements.

As of writing of this report, all dataloggers listed in Table 1 are currently in place in the noted water wells, except the datalogger in well 845. This datalogger was removed from the well on 2 December 2021 and sent for repair.



**Table 1: Datalogger Installation Summary** 

| Project<br>Water Well<br>ID | Approximate<br>Location | Inferred Material<br>Screened        | Approximate<br>Elevation* of<br>Wellhead | Pumping<br>Status** | Date<br>Datalogger<br>Installed | Datalogger<br>ID |
|-----------------------------|-------------------------|--------------------------------------|------------------------------------------|---------------------|---------------------------------|------------------|
| 845                         | Hitchcock Road          | Bedrock Aquifer 351                  | 715.6 masl                               | Inactive            | 18/05/2021                      | 2137023          |
| 896-50394                   | McLennan Road           | Bedrock Aquifer 351                  | 728.1 masl                               | Inactive            | 18/05/2021                      | 2135181          |
| 896-62006                   | McLennan Road           | Bedrock Aquifer 351                  | 691.1 masl                               | Inactive            | 18/05/2021                      | 2135178          |
| 840                         | Wilson-Jackson<br>Road  | Bedrock Aquifer 351                  | 931.2 masl                               | Inactive            | 01/06/2021                      | 2137016          |
| 704                         | Keddleston Road         | Bedrock Aquifer 351                  | 873.3 masl                               | Active              | 01/06/2021                      | 2127187          |
| 180                         | Keddleston Road         | Bedrock Aquifer 351                  | 856.9 masl                               | Active              | 01/06/2021                      | 2137018          |
| 731                         | Jackpine Road           | Bedrock Aquifer 351                  | 959.5 masl                               | Active              | 01/06/2021                      | 2136999          |
| 412                         | Rogers Road             | Bedrock Aquifer 351                  | 1019.2 masl                              | Active              | 01/06/2021                      | 2137010          |
| 021                         | Keddleston Road         | Confined sand, gravel<br>Aquifer 349 | 767.5 masl                               | Active              | 02/06/2021                      | 2137940          |
| 189                         | Mountridge Road         | Bedrock Aquifer 351                  | 611.1 masl                               | Active              | 02/06/2021                      | 2137941          |
| 000                         | Clearview Road          | Bedrock Aquifer 351                  |                                          | Active              | 02/06/2021                      | 2137002          |
| 120                         | McLennan Road           | Bedrock Aquifer 351                  | 576.6 masl                               | Active              | 02/06/2021                      | 2137131          |
| 746                         | Cary Road               | Confined sand, gravel<br>Aquifer 349 | 763.9 masl                               | Active              | 02/06/2021                      | 2137124          |
| 233                         | McLennan Road           | Bedrock Aquifer 351                  | 769.3 masl                               | Inactive            | 23/06/2021                      | 2137014          |
| 726                         | Wilson-Jackson<br>Road  | Bedrock Aquifer 351                  | 914.5 masl                               | Active              | 12/07/2021                      | 2128465          |
| 026                         | Wilson-Jackson<br>Road  | Bedrock Aquifer 351                  | 930.8 masl                               | Active              | 12/07/2021                      | 2137008          |

<sup>\*</sup> Elevations are in metres above sea level (masl)
\*\*"Active" denotes pumping well; "Inactive" denotes non-pumping well

## 4.4 Pumping Tests

Two pumping tests were completed to assist in understanding the hydraulic properties (hydraulic conductivity) of bedrock Aquifer 351. These data were supplemented with transmissivity and hydraulic conductivity estimates obtained from Carmichael et al. (2009), as discussed in Section 4.8.1. Details of the pumping tests are outlined below. Testing was conducted by Monashee and was supervised by Golder field personnel at the start of, and near the end of, the testing.

#### Bedrock Well 726 - Wilson-Jackson Road

A test pump and the existing drop tube and datalogger were lowered into well 726 and the well was subsequently chlorinated with chlorine powder on the morning of 24 January 2022. The constant rate pumping test commenced at 12:00 PM on 24 January 2022 and continued until 12:00 PM on 26 January 2022, for a total of 2 days (48 hours, or 2,880 minutes). The static water level prior to the commencement of the pumping test was 19.8 m below top of casing (btoc).

The well was pumped at a flow rate of 0.75 US gpm (0.047 L/s) for the duration of the 48-hour pumping test. A bucket and stopwatch were used throughout the pumping test to confirm flow rate. During the constant rate pumping test, manual drawdown measurements were collected by Monashee at the well, in accordance with the frequency noted in the provincial *Guide to Conducting Pumping Tests* (Pumping Test Guide). Manual measurements of the water level recovery were collected by Monashee for a duration of 3 hours (180 minutes) following the end of the pumping test and prior to removing the drop tube and datalogger, and the test pump.

It is noted that a pumping test was initially conducted by Monashee at well 726 between 3:00 PM on 15 November 2021 and 3:00 PM on 18 November 2021, for a total of 3 days (72 hours, or 4,320 minutes). The well was pumped at a flow rate of 0.5 US gpm (0.032 L/s) for the first 24 hours; the pumping rate was then increased to 0.75 US gpm (0.047 L/s) for the remainder of the 72-hour pumping test. At approximately 3,300 minutes into the pumping test, Monashee's water level probe became lodged in the drop tube and Monashee was no longer able to take manual water level measurements. The pumping test was continued for the remainder of the 72 hours as a datalogger had been installed in the drop tube; however, upon completion of the testing, it was found that the datalogger had stopped recording during the testing period. The pumping test at well 180 was therefore redone on in January 2022 (as described in the preceding paragraphs).

#### Bedrock Well 180 - Keddleston Road

The existing pump at well 180 was removed by Monashee; a test pump and the existing drop tube and datalogger were lowered into the well and the well was subsequently chlorinated with chlorine powder at 12:45 PM on 29 November 2021. The constant rate pumping test commenced at 2:00 PM on 29 November 2021 and continued until 2:00 PM on 2 December 2021, for a total of 3 days (72 hours, or 4,320 minutes). The static water level prior to commencement of the pumping test was 31.3 mbtoc.

The well was pumped at a flow rate of 1 USgpm (0.063 L/s) for the first 18 hours, then increased to 2 USgpm (0.130 L/s) for 9 hours, and to 3 US gpm (0.190 L/s) for the remainder of the 72-hour pumping test. A bucket and stopwatch were used throughout the pumping test to confirm flow rate. During the constant rate pumping test, manual drawdown measurements were collected by Monashee at the well, in accordance with the frequency



noted in the provincial Pumping Test Guide. Manual measurements of the water level recovery were collected by Monashee for a duration of 2 hours (120 minutes) following the end of the pumping test and prior to removing the drop tube and datalogger and test pump.

Pumping test data from bedrock wells 726 and 180 were analyzed and hydraulic conductivity values estimated using AQTESOLV®, a commercially available software package for aquifer test analysis.

## 4.5 Groundwater Sampling

Groundwater samples were collected by Golder field personnel from eight of the monitored water wells, as follows.

- Wells 120 and 412: Groundwater samples at wells 120 and 412 were collected from yard hydrants on 18 November 2021. The yard hydrant at each location was located between the water well and the residence. At each hydrant, a clean garden hose connection (hose provided by Golder) and the hydrant tap were disinfected using 70% isopropanol alcohol, and the hose was connected to the hydrant tap. Water from the tap was allowed to flow for approximately 30 minutes (at well 120) to 40 minutes (at well 412) to remove any water that had been sitting in the distribution network. Discharge water was directed away from the residence into a vegetated area. The hose was then removed from the hydrant and groundwater samples were collected directly from the hydrant.
- Well 000. The groundwater sample at well 000 was collected on 18 November 2021 from a hose provided by the homeowner that was connected to a tap in a shed northwest of the well and north of the residence. The tap and hose connection were disinfected using 70% isopropanol alcohol. Water from the tap was allowed to flow into a vegetated area for approximately 35 minutes to remove any water that had been sitting in the distribution network. The groundwater sample was collected directly from the end of the hose.
- Wells 021 and 840. Groundwater samples at wells 021 and 840 were collected on 18 November 2021 and 16 December 2021, respectively, from pipes that discharged well water directly into reservoirs. During sample collection, groundwater from the pipe outflow was collected in a clean laboratory-supplied sample container and subsequently transferred into the designated laboratory bottles. At well 021, the homeowner manually turned the pump on so that a sample could be collected; at well 840, a sample container was placed below the pump when the pump turned on (the pump was on a timer that turned on hourly).
- Well 026. The groundwater sample at well 026 was collected on 2 December 2021 from a tap (prior to water flowing into a cistern). The tap was disinfected using 70% isopropanol alcohol, and water was allowed to flow into a floor drain for approximately 30 minutes to remove any water that had been sitting in the distribution network. The groundwater sample was collected directly from the tap. It is noted that this property contains two wells, and the groundwater sample was collected from the well that is not instrumented with the datalogger. It is assumed that as the wells draw water from the same aquifer fracture(s) as they are completed at the same depth.
- **Wells 726 and 180**. Groundwater samples at wells 726 and 180 were collected from the pumped discharge water near the end of the pumping tests on 18 November 2021 and 2 December 2021, respectively.



During sample collection, routine field water quality indicator parameters (pH, temperature, conductivity, dissolved oxygen, oxidation-reduction potential, and turbidity) were measured immediately before sampling using a YSI meter and turbidity meter. Calibration of the YSI and turbidity meters was completed in advance of the sampling, as per the manufacturer's instructions and a record of the calibrations was maintained.

Groundwater samples were collected in pre-cleaned, laboratory-supplied sample bottles provided by CARO Analytical Services. When required, samples were preserved with chemicals supplied by the laboratory. Samples were appropriately labelled and stored in coolers filled with ice packs for same-day transport to CARO's analytical laboratory in Kelowna, BC, accompanied by appropriately completed chain-of-custody forms.

The groundwater samples were analysed for speciated alkalinity, hardness, total dissolved solids (TDS), total suspended solids (TSS), turbidity, pH, conductivity, nutrients (ammonia, nitrate, nitrite), anions (bromide, chloride, fluoride, sulfate), bacteriological parameters (total and fecal coliforms, E. coli), isotopes of water (<sup>18</sup>O and <sup>2</sup>H), dissolved metals parameters, and total metals parameters.

## 4.6 GPS Survey

The locations and top of casing elevations of the 16 water wells were surveyed by Golder personnel on 11 and 12 August 2021 using a Total Station and Trimble Recon/ProXH GPS receiver.

## 4.7 Quality Assurance/Quality Control

A quality assurance and quality control (QA/QC) program was implemented during the field program to confirm that sampling and analytical data were interpretable, meaningful and reproducible. This involved using QA/QC measures in both the collection (field program) and analysis (laboratory program) of groundwater samples. A summary of the QC measures that were implemented during the field program and during our review of the data, as well as the QA/QC measures implemented by the analytical laboratory, are discussed below.

## 4.7.1 Field QC Program

The QC measures used in the collection, preservation and shipment of samples included the following:

- Sampling methods were consistent with established industry protocols and provincial/federal requirements.
- Field notes were recorded during the field studies.
- Geographic locations were accurately reported to allow for revisiting of sample locations.
- Samples were stored in coolers and chilled with ice or ice packs during transport to the laboratory.
- Samples were transported and submitted to the laboratory using chain of custody procedures.



## 4.7.2 Laboratory QA/QC Program

The analytical laboratory (CARO) incorporated and reported the results of internal checks which were used to assess the reliability, accuracy and reproducibility of the data.

The following data quality objectives (DQOs) were established for the laboratory analytical program:

- The laboratory that was used has achieved proficiency certification by the Canadian Association for Laboratory Accreditation Inc. (CALA) for the analyses conducted.
- In addition to the field samples and blind field duplicates, each analysis batch included at least one laboratory duplicate sample, one analytical (method) blank, and one reference sample (a certified reference standard, spike or control standard).

The following criteria were considered acceptable for laboratory QA/QC samples:

- Laboratory paired analyses results should be within laboratory-applied certified values for inorganic elements and organic compounds.
- Analytical recovery results for reference materials or spiked standards should be within laboratory-applied certified values for inorganic elements and organic compounds.
- Analytical (method) blanks should be below the reporting limits used for the specific analysis.
- Reports were to be reviewed internally by the laboratory prior to submission to Golder. If internal QA/QC problems were encountered, the field samples and internal QA/QC samples were to be re-analyzed.

Based on review of the laboratory QA/QC analyses, the quality of the samples and the reproducibility of the data is deemed to be satisfactory.



# 5.0 SUPPLEMENTARY INFORMATION USED IN PHASE 2 GROUNDWATER STUDY

## 5.1.1 Aquifer 351 Transmissivity Data

Transmissivity and hydraulic conductivity values were available for 11 bedrock wells completed in Aquifer 351 within the Study Area (refer to Figure C in Section 5.4.1 for the locations of these 11 bedrock wells). The transmissivity and hydraulic conductivity values were based on previous pumping test data that was re-analyzed by Carmichael et al. (2009) using the derivative method.

## 5.1.2 Water Quality Data – McLennan Road

An owner of water wells located on a property on McLennan Road provided Golder with laboratory analytical reports for groundwater samples collected in 2014 at three bedrock wells on the property (WTN 109892, WTN 109891 and WTN 109890) and for groundwater samples collected in 2020 at four other bedrock wells on the property (WPID 38544, WPID 62012, WPID 50395 and WPID 62008). A report containing water quality data for groundwater samples collected in 2017 at an additional three bedrock wells on the property (WPID 47646, WPID 47647 and WPID 47648; WWAL, 2017) was provided to Golder by the RDNO. The groundwater quality data for these 10 bedrock wells were evaluated by Golder for water types and general water quality together with the groundwater quality data collected as part of the Phase 2 Groundwater Study.

## 5.1.3 Reports for Other Properties Within Study Area

Hydrogeological reports completed for other properties within the Study Area were provided to Golder by the RDNO. These reports were reviewed; relevant hydrogeological information was evaluated as part of the Phase 2 Groundwater Study and referenced as applicable.



## 6.0 INVESTIGATION FINDINGS

## 6.1 Well Survey

## 6.1.1 Well Survey Responses

A total of fifty-six (56) properties in the Phase 2 Groundwater Study Area provided responses to RDNO (approximately 18% of the 306 properties that received the survey). The approximate locations of these 56 properties are shown on Figure 3, with the well symbol shaded purple to denote wells completed in bedrock and green to denote wells completed in an overlying sand and gravel unit. A summary of the relevant findings of the survey responses is provided below:

- Six of the 56 properties reported that a well was not present on their property (it is likely that they import water); these six properties are located on Silver Star Road, Jackpine Road and Aspen Road.
- Two of the 56 properties reported drilling dry wells, one was drilled to depth of 91.5 m (300 feet) below ground surface (bgs), and another to a depth of 259.1 m (850 feet) bgs.
- The remaining 48 properties reported a single operational well; three of these properties reported having a second operational well (information was provided for the additional operations wells by the property owners) and one property reported having an additional three operational wells (information was not provided for the additional wells by the property owner, and therefore not discussed below).
- Thirty-one (31) wells were reported (or are inferred) to be completed in bedrock at depths ranging from 18.1 m (59.5 feet) to 219.5 m (720 feet) bgs, with an average depth of 101.7 m (333.4 feet) bgs. Of the wells completed in bedrock, eight (8) wells were reported to experience water shortage issues throughout the year, particularly in the summer months. Two properties indicated that they drilled a deeper well because of water availability issues with their original (shallower) well. The approximate areas where water shortages have been reported in bedrock wells are shown on Figure 3. Water quality concerns reported by well owners included hard water, elevated iron and fluoride concentrations and turbidity, and minor sulphur odour.
- Twenty (20) wells were reported (or are inferred) to be completed in a sand and gravel unit at depths ranging from 1.5 m (5.0 feet) to 88.4 m (290 feet), with an average depth of 22.1 m (72.4 feet) bgs. Of the wells completed in sand and gravel, eight (8) wells experienced water shortage issues in the summer and/or fall months. Five of the eight wells are inferred to be completed in shallow alluvial deposits, possibly in hydraulic connection with a nearby stream (based on reported well completion depths of 1.5 m [5 feet] to 7.6 m [25 feet]), and the remaining three wells are inferred to be completed in deeper, confined sand and gravel deposits (based on reported well completion depths of 27.4 m [90 feet] to 42.1 m [138 feet]). The approximate areas where water shortages have been reported in wells completed in sand and gravel are shown on Figure 3. Water quality concerns reported by well owners include hard water and elevated iron concentrations, with minor turbidity and sulphur odour.



## 6.1.2 Supplemental Well Information

In October 2021, the RDNO provided Golder with a list of properties that had reported groundwater shortages over the summer and fall of 2021. The approximate locations of these properties are shown on Figure 3. A summary of the groundwater availability concerns is provided as follows:

- A property owner on Silver Star Road reported that the primary source of water for their property is a shallow groundwater well in the Meakins Creek drainage and that the well has gone dry.
- Two other properties on Jordashe Road, within the Meakins Creek drainage, reported dry water wells.
- A property owner on Jordashe Road reported a dry water well.
- The property owner on Chew Road indicated that a seasonal creek near Chew Road had gone dry and that the water level in their shallow dug well was low.
- A resident on Silver Star Road, near Chew Road, indicated that their well had gone dry.
- Several residents on Wilson-Jackson Road indicated that they had been without groundwater since prior to the high temperatures that occurred in the Okanagan in June 2021.
- A resident on Aspen Road, near Jackpine Road, indicated that their drilled well had gone dry.

During the pumping test at the property on Wilson-Jackson Road in November 2021 (refer to Section 4.4), the property owner reported that several small creeks/drainages in the Wilson-Jackson Road area had gone dry in the summer of 2021.

The groundwater availability issues reported in these areas may be a result of limited recharge to the shallow (unconfined) alluvial deposits associated with Meakins Creek (a tributary of BX Creek) in early spring 2021, particularly from reduced precipitation falling at lower elevations (refer to Figure B), followed by dry late spring and summer conditions. Additional pumping for irrigation purposes during the summer months may have intensified the already declining water levels.



29 June 2022



Figure B: Daily precipitation for the lower elevation Vernon Auto weather station (blue line) and higher elevation Vernon Silver Star Lodge weather station between 2019 and 2021 (Government of Canada, 2022).



## 6.2 Water Level Trends

Manual water level measurements obtained in 2021 at the 16 water wells, and the associated calculated groundwater elevations, are provided in Table 2. The calculated groundwater elevations (from manual measurements) along with groundwater elevations obtained from the dataloggers between 18 May and 7 December 2021 are plotted with time on one combined plot for the 16 water wells (refer to Figure C1 in Appendix C) and for each individual water well (refer to charts for each well in Appendix C, following Figure C1). Daily precipitation data obtained from the Vernon and Silver Star Lodge weather stations (Government of Canada, 2022) and groundwater elevations from provincial Observation Well 311 (Keddleston Road) are also included on the combined plot (Figure C1). Groundwater elevations are also shown on the stratigraphic cross-sections (Figures 5 and 6, with cross-section line orientations shown on Figure 3).

In general, the following observations were made with respect to the groundwater elevation data collected at the Study Area between 18 May and 7 December 2021:

- Static (non-pumping) groundwater elevations were discernable from groundwater elevations during pumping (i.e., groundwater levels returned to static, or near-static, conditions after the pump was turned off), except at water wells 840 (bedrock), 704 (bedrock) and 021 (confined sand and gravel), and also at well 026 (bedrock) during the summer of 2021. Groundwater elevations at wells 840, 704 and 021 and at well 026 during the summer of 2021 exhibited an oscillating pattern, making it difficult to identify a static groundwater level. The oscillating pattern is inferred to be due to the pump in the well turning off and then on prior to levels reaching static, or near static, conditions. At the three bedrock wells 840, 704 and 026 (summer 2021 only), the pumping and non-pumping water levels appear to be below the depths of the bedrock fractures that are reported on the respective well records.
- For the water wells that did not show an oscillating response, static groundwater elevations generally decreased between the start of the monitoring period in May/June 2021 until early September 2021, inferred to correspond to a decrease in seasonal precipitation and an increased use in groundwater, and then gradually increased for the duration of the monitoring period (i.e., until early December 2021), inferred to correspond to an increase in precipitation coupled with a decrease in water use. Exceptions to this trend in water levels were observed at the following wells:
  - At bedrock wells 731, 726, 180 and 845, water levels continued to decrease after early September 2021 and were lowest in December 2021. In addition to a decrease in seasonal precipitation and an increased use in groundwater over the summer months, there is likely also a delay in recharge to these wells, which would suggest that the fracture network(s) at these wells may not be directly connected to surface recharge from local fall rain events and may be recharged to a larger extent by higher elevation precipitation (snowmelt).
  - At bedrock well 233, the water level decreased between the start of the monitoring period in June 2021 until mid-November 2021 and then gradually increased for the duration of the monitoring period (i.e., until early December 2021). This well is in a sparsely developed area at the north end of the Study Area and is currently not in use. The approximate two-month delay in the seasonal increase in water levels may reflect a delay in recharge to this well from the early fall rains, suggestive that the fracture network at this well may not be directly connected to surface recharge from local rain events.
  - The collection of at least one year of groundwater level data (i.e., up to at least mid-2022, including freshet) is required to better understand the patterns that reflect seasonal recharge and groundwater use.



The static water levels at bedrock wells 896-50394, 120 and 026, and at well 746 (confined sand and gravel), were higher in December 2021 than initially measured in mid 2021. The static water levels at the remaining wells were lower in December 2021 than initially measured in mid 2021 (but higher than in early September 2021). The higher static water levels at bedrock wells 896-50394, 120, 026 and 746 in December 2021 relative to those measure in mid 2021 may reflect additional groundwater use in these areas prior to, and near the start of, the monitoring program; however, as above, additional water level data collected to at least mid-2022 (including freshet) is required to better understand the patterns that reflect seasonal recharge and groundwater use.

- During the monitoring period, the difference in seasonal static groundwater elevations at most bedrock wells ranged from 1.4 m to 2.7 m, where static water levels were measurable; however, seasonal variations at the two most downgradient bedrock wells located at the west end of the Study Area (pumping wells 120 and 189) and at the bedrock well located at the north end of the Study Area (non-pumping well 233) ranged from 5.3 m (at well 233) to 16 m (at well 120). The larger differences in seasonal groundwater elevations at these three wells may be influenced by higher groundwater use in these areas during the summer months, as corroborated by the relatively higher number of residential properties in the area of McLennan Road and Mountridge Road relative to other parts of the Study Area.
- In wells that were actively pumping during the monitoring period, water level drawdowns during pumping activities between mid 2021 and early September 2021 ranged from <1 m (at well 189) to approximately 65 m (at well 726), as follows:
  - drawdowns on the order of 60 m were observed at bedrock wells in the Wilson-Jackson Road area (wells 840 and 726)
  - drawdowns on the order of 10 to 20 m were observed at the western-most bedrock well on McLennan Road (well 120), the eastern-most bedrock well on Rogers Road (well 412), a bedrock well at the north end of Keddleston Road (well 180) and confined sand and gravel wells 746 and 021. It is noted that the confined sand and gravel well 021 was dry when measured on 5 October 2021
  - drawdowns of up to 6 m were observed in the bedrock wells on Mountridge Road (well 189), Clearview Road (well 000), Jackpine Road (well 731) and the north end of Keddleston Road (well 704).

The magnitude of water level drawdowns during pumping activities generally decreased after early September 2021, that is inferred to correspond to the end of the irrigation season.

- The groundwater elevations in the non-pumping bedrock wells did not fluctuate in a manner that would suggest influence from nearby pumping activities.
- Groundwater (non-pumping and pumping) elevations are shown on the charts for each well relative to the inferred (approximate) depth to the bottom of the well, or where the bottom depth of the well was not known, the depth to the top of pump (refer to Charts in Appendix C). The depths of bedrock fractures, well liner and/or liner perforations, where reported on well records, are indicated on the respective charts. For many wells, the depths of the fractures and liner perforations and/or presence of liner are not known. The following observations were made:
  - At the pumping wells completed in bedrock, the vertical distance between the lowest pumping groundwater elevation and the depth of the well bottom (or top of pump) ranged from approximately 5 m (at well 731) to 70 m (at well 840). At the two bedrock wells that exhibited the largest seasonal variations (i.e., pumping wells 120 and 189 at the west end of the Study Area), the vertical distance between the lowest pumping groundwater elevation and the depth of the well bottom was 10 m and 19 m, respectively.



At the non-pumping wells completed in bedrock, the vertical distance between the lowest seasonal groundwater elevation and the depth of the well bottom (or top of pump) ranged from approximately 51 m (at well 896-50394) to 110 m (at well 726).

There was little to no separation between the lowest pumping groundwater elevation and the approximate depth to the bottom of the well at the confined sand and gravel well 021 (0 m; dry well) and well 746 (approximately 2 m of separation).

The vertical distances between groundwater elevations and the depth to the bottom of the well (or top of pump) are presented herein to show the variability in the relative amount of water in the wells monitored as part of this Phase 2 Groundwater Study during pumping and non-pumping conditions. The distances shown or discussed herein are not equivalent to the available drawdown, or safe available drawdown, in the well; they do not account for the presence of fractures; nor do they consider the well's sustainable yield. When considering the safe available drawdown and the sustainable yield of a bedrock well, the water level should not be pumped below the upper-most water-bearing fracture that is supplying groundwater to the well.

## 6.3 Groundwater Flow Directions and Hydraulic Gradients

## 6.3.1 Regional Keddleston Area

On a regional scale, groundwater flow across the Keddleston area is inferred to be towards the west-southwest, from the bedrock dominated upland areas near Silver Star Resort towards the Swan Lake valley bottom.

## 6.3.2 Study Area

Based on water levels monitored during the Phase 2 Groundwater Study, non-pumping groundwater elevations were highest at the water wells located at the east (upgradient) end of the Study Area and lowest at the water wells located at the west (downgradient) end of the Study Area (refer to the cross-sections on Figures 5 and 6).

In general, the overall direction of groundwater flow in bedrock Aquifer 351 is inferred to be to the west-southwest under a horizontal hydraulic gradient of approximately 0.06 m/m at the upgradient end of the Study Area to approximately 0.18 m/m at the downgradient end of the Study Area, as shown on the attached groundwater contour figures for groundwater elevations measured on 15 and 19 July 2021 (Figure 7) and on 6 and 7 December 2021 (Figure 8). As shown on the groundwater contour figures, the change in the horizontal hydraulic gradient across the Study Area between July and December was minimal, indicative of relatively small seasonal changes in the slope of the groundwater surface across the Study Area. The direction of groundwater flow in the confined sand and gravel aquifer (Aquifer 349) north of BX Creek could not be confirmed with the two water wells that were monitored during the Phase 2 Groundwater Study; however, based on available water levels reported on well logs, the groundwater flow direction in Aquifer 349 north of BX Creek is inferred to be south to southwest, towards BX Creek, under a horizontal hydraulic gradient of approximately 0.08 m/m (Golder 2020).

Groundwater elevations at bedrock well 000 were relatively lower than the neighbouring water levels (as indicated by the flattening of the contour interval near well 000 on Figures 7 and 8). Well 000 is completed at relatively similar elevations to the neighbouring wells; however, the water level is generally lower than in neighbouring wells (refer to the cross-sections on Figures 5 and 6). The lower water levels may be related to relatively lower groundwater pressures in the fracture(s) within the upper portion of the bedrock aquifer at this location, possibly due to a relatively more conductive fracture(s) at this location.



## 6.4 Aquifer Characteristics

## 6.4.1 Hydraulic Conductivity

The results of the pumping test analysis at bedrock wells 726 and 180 (AQTESOLV® plots) are presented in Appendix D. The hydraulic conductivity value of the bedrock was estimated using the Cooper Jacob (1946) solution for a pumping test in a confined aquifer and checked with a solution specific to bedrock fractures (Gringarten-Ramey-Raghavan (1974) solution for a pumping test in a fractured aquifer with a single vertical fracture that is intersected by a pumped well). The hydraulic conductivity value of the bedrock was estimated to be 2.2E-9 m/s (at well 726) and 3.5E-7 m/s (at well 180).

Hydraulic conductivity values from the 11 bedrock wells that were re-analyzed by Carmichael et. al. (2009) ranged from 0.0014 m/d to 0.35 m/d (9.7E-7 m/s to 2.4E-4 m/s); corresponding transmissivity values ranged from  $0.01 \text{ m}^2/\text{d}$  to  $1.1 \text{ m}^2/\text{d}$  (6.9E-6 m/s to 7.6E-4 m/s).

Of the bedrock wells with available hydraulic conductivity and transmissivity data, it appears that wells within the central portion of the Study Area, along the north end of Keddleston Road and on Wilson-Jackson and Aspen Roads (highlighted red and orange on Figure C), including bedrock wells 726 and 180, exhibited lower hydraulic conductivity values (on the order of E-7 to E-9 m/s) and corresponding lower transmissivity values. These relatively low values suggest that wells completed in this portion of the bedrock aquifer are generally likely to have lower yields; however, flow in bedrock is variable. Bedrock wells closer to the northern boundary of the Study Area (highlighted green on Figure C) exhibited relatively higher hydraulic conductivity and transmissivity values. Hydraulic conductivity and transmissivity data were not available for wells at the west (downgradient) end of the Study Area.





Figure C: Map taken from Carmichael et al. (2009) showing 11 bedrock wells (red dot with label) completed in Aquifer 351 where hydraulic conductivity and transmissivity values were estimated based on pumping test data re-analyzed by Carmichael et al. (2009). Well label (i.e., 82400) is the WTN for each of the 11 bedrock wells; shading of WTNs is discussed in report. Stars represent the two bedrock wells tested as part of this Phase 2 Groundwater Study.

## 6.4.2 Hydraulic Connectivity and Well Interference

Water level drawdowns for wells that were located closest to each other were compared to assess the potential for well interference, based on the location and accessibility of wells in the area. It is noted that in most cases, the wells are not on adjacent properties but rather separated by several rural properties, with distances between wells ranging from approximately 50 m to over 600 m.

■ Wells 026, 840 and 726 on Wilson-Jackson Road. No direct correlation between the water levels at these three neighbouring wells was apparent during the monitoring period (Figure D). During the pumping test at well 726 between 15 and 18 November 2021, the water levels at wells 026 and 840 did not appear to respond to the pumping activities.



Figure D: Groundwater elevations at bedrock wells 026, 840 and 726 on Wilson-Jackson Road during the monitoring period, including during the pumping test conducted at well 726.

Wells 704 and 180 on Keddleston Road and Well 000 on Clearview Road. There was no apparent correlation between the water levels at wells 704, 180 and 000 during the monitoring period (Figure E).. During the pumping test at well 180 between 29 November and 2 December 2021, it appears that well 704 continued with its characteristic oscillating pumping schedule for the duration of the pumping test and for four days after the pumping test (at which time the datalogger was removed from wells 704 and 180 as part of the December 2021 datalogger download event).



Figure E: Groundwater elevations at bedrock wells 704, 180 and 000 during the monitoring period, including during the pumping test conducted at well 180.

wells 120 (McLennan Road) and 189 (Mountridge Road). Seasonal trends in water levels were generally similar at wells 120 and 189 during the monitoring period, declining from May through the end of August (Figure F); however, the level in well 189 shows a slight delay (approximately two weeks) in recharge relative to well 120. In August, the frequency of pumping (i.e., pump turning on and off) in well 120 was greatest and the groundwater levels were lowest. Increases in the static water level in well 120 in early September and mid November are inferred to reflect reduction in pumping from the well, whereas the increase observed in early December may reflect broader recharge to the aquifer. Although no direct correlation of the water levels was apparent with respect to specific pumping events at wells 120 and 189 (Figure F), pumping from the individual wells may have had an influence on static groundwater levels in the general area.



Figure F: Groundwater elevations at bedrock wells 120 and 189 during the monitoring period.

■ Wells 896-50394 (McLennan Road) and 000 (Clearview Road), and wells 896-50394 and 120 (McLennan Road). During the monitoring period, seasonal trends in water levels were generally consistent between inactive well 895-50394 and pumping well 000, located upgradient (east) of well 896-50394, and between inactive well 895-50394 and pumping well 120 located downgradient (west) of well 896-50394 (Figure G). There was no apparent correlation of the water levels at inactive well 896-50394 with pumping activities at wells 000 and 120.



Figure G: Groundwater elevations at bedrock wells 896-50394 and well 000 (left plot) and bedrock wells 896-50394 and well 120 (right plot) during the monitoring period.

■ Wells 021 (Keddleston Road) and 746 (Cary Road). There was no apparent correlation of the water levels with respect to pumping activities at the confined sand and gravel wells 021 and 746 (Figure H).



Figure H: Groundwater elevations at confined sand and gravel wells 021 and 746 during the monitoring period.

## 6.5 Groundwater Quality

#### 6.5.1 General Water Chemistry

Tabulated analytical groundwater results are presented in Table 3 – Analytical Groundwater Quality Results and in Table 4 – Analytical Groundwater Isotope Results. Copies of the laboratory Certificates of Analysis are provided in Appendix E.

For characterisation purposes and to assess general water quality, the data were tabulated and, where applicable, compared to the Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ) (Health Canada 2020) maximum acceptable concentration (MAC) and aesthetic objective (AO) criteria.

#### 6.5.1.1 Water Types

Groundwater quality data from the eight wells sampled by Golder in November and December 2021 and the 10 wells sampled by others at the property on McLennan Road are presented on a Piper diagram (Figure E). The groundwater samples are grouped into the following water types based on their position on the Piper diagram (Figure I):

- Calcium bicarbonate (Ca-HCO<sub>3</sub>) to magnesium bicarbonate (Mg-HCO<sub>3</sub>) type waters, characterized by groundwaters at bedrock wells 412 (at the east [upgradient] end of the Study Area), 120 (at the west [downgradient] end of the Study Area), 180 (in central portion of Study Area on Keddleston Road) and the 10 bedrock wells at the property on McLennan Road (at the west end of the Study Area).
- Calcium sulphate (Ca-SO<sub>4</sub>) type waters, characterized by groundwater at the confined sand and gravel well 021.
- Sodium sulphate (Na-SO<sub>4</sub>) type waters, characterized by groundwater at bedrock well 000.
- Sodium bicarbonate (Na-HCO<sub>3</sub>) type waters, characterized by groundwaters at bedrock wells 026, 726 and 840.

Groundwater samples collected at wells 412, 120 and 180, and at the 10 bedrock wells across the property on McLennan Road, plot in a region in the piper diagram that is indicative of fresh water (i.e., precipitation). Groundwater at these wells is inferred to be recharged by precipitation, with relatively little bedrock interaction at well 412 and some degree of bedrock interaction at well 180 and at the 10 bedrock wells across the property on McLennan Road. Based on the nitrate and chloride concentrations in groundwater at well 120 (Table 3), the groundwater at well 120 may be influenced by surface processes (i.e., septic system discharge, road salting).

The Ca-SO<sub>4</sub> and Na-SO<sub>4</sub> type waters at wells 021 and 000, respectively, suggest that these groundwaters have undergone some degree of bedrock interaction resulting in a higher sulphate content. Groundwaters at bedrock wells 026, 726 and 840 are indicative of deeper groundwaters that have undergone geochemical change (i.e., ion exchange [calcium to sodium]).

Based on preliminary observations of this limited dataset, the different water types may be representative of the interaction of groundwater with different bedrock types and/or may represent groundwater flow within shallow and deep bedrock fracture networks, where the calcium- and magnesium-dominant waters are representative of a shallow groundwater flow system and the sodium-dominant waters are representative of a deeper groundwater flow system; however, additional water quality data across the Study Area would be required to confirm these preliminary observations.





% meg/kg

Figure I: Piper diagram showing water types for groundwater samples collected by Golder as part of the Phase 2 Groundwater Study (coloured symbols) and samples collected by a property owner at their wells on McLennan Road (grey symbols).

#### 6.5.1.2 Comparison to CDWQG

Based on the comparison of water quality data to the criteria in Health Canada's GCDWQ, the following natural exceedances of criteria were identified. As the GCDWQ criteria for metals are for total metals and not dissolved metals, only the exceedances of total metals criteria are shown in Table 3 and discussed below.

- TDS in the groundwater samples collected at wells 120, 000, 021, 726, 180, 026 and 840 were greater than the GCDWQ AO of ≤500 mg/L.
- Total coliforms in the groundwater samples collected at wells 120, 000, 021 and 412 were greater than the GCDWQ MAC of "none detectable per 100 mL". As per Health Canada (2020), the presence of total coliforms in non-disinfected groundwater may indicate that the system is vulnerable to contamination, a sign of bacterial regrowth, or that the sample came into contact with a surface with bacteria. At this time, it is not known



whether the detectable total coliforms were present along the sampling equipment train (i.e., hose, hose connections), at the outflow tap/piping, in the well casing and/or associated distribution piping, or in the groundwater. The highest total coliforms count was measured at well 021, where the groundwater sample was collected directly from the pipe outflow and had no contact with the sampling equipment. For groundwater samples collected at wells 120, 000 and 412, it is assumed that the hose, hose connections and outflow taps did not contribute to the total coliforms count, as these points were disinfected during sampling and groundwater was purged for at least 30 minutes prior to sampling.

- Fluoride concentrations in the groundwater samples collected at the three bedrock wells on Wilson-Jackson Road (wells 726, 026 and 840) were greater than the GCDWQ MAC of 1.5 mg/L.
- Sulphate concentrations in the groundwater samples collected at bedrock well 000 and the confined sand and gravel well 021 were greater than the GCDWQ AO of ≤500 mg/L.
- Total iron concentrations in the groundwater samples collected at bedrock wells 726 and 180 were greater than the GCDWQ AO of ≤0.3 mg/L.
- Total lead concentrations in the groundwater samples collected at bedrock wells 726 and 026 were greater than the GCDWQ MAC of 0.005 mg/L.
- Total manganese concentrations in the groundwater samples collected at bedrock wells 000, 412, 726 and 180 were greater than the GCDWQ AO of <0.02 mg/L. The total manganese concentrations in the groundwater samples collected at wells 726 and 180 were also greater than the GCDWQ MAC of 0.12 mg/L.
- Total sodium concentrations in the groundwater samples collected at bedrock wells 000 and 726 were greater than the GCDWQ AO of ≤200 mg/L.
- The total uranium concentration in the groundwater samples collected at bedrock well 120 was greater than the GCDWQ MAC of 0.02 mg/L.

#### 6.5.2 Isotopes of Water

Within the water molecule, there are two stable isotopes of hydrogen: <sup>2</sup>H and <sup>1</sup>H, and three stable isotopes of oxygen: <sup>16</sup>O, <sup>17</sup>O and <sup>18</sup>O. These stable isotopes are conservative groundwater tracers and often carry a signature that indicates the source of groundwater recharge and relative residence times of groundwater in the subsurface.

The stable isotopes of hydrogen and oxygen are measured as the ratio of the two most abundant isotopes of a given element (for oxygen, these are  $^{16}$ O and  $^{18}$ O) (Clark and Fritz 1997). Water isotope results are reported relative to Vienna Standard Mean Ocean Water (VSMOW)-Standard Light Antarctic Precipitation (SLAP), and expressed in the  $\delta(\%)$  ("del") notation (Clark and Fritz 1997), as follows for  $\delta^{18}$ O:

$$\partial^{18}O = \left(\frac{(^{18}O/^{16}O)_{sample} - (^{18}O/^{16}O)_{smow}}{(^{18}O/^{16}O)_{smow}}\right) x 1000$$

where:

 $(^{18}O/^{16}O)_{sample}$  = light to heavy isotope ratio for the oxygen in the sample  $(^{18}O/^{16}O)_{smow}$  = light to heavy isotope ratio for the oxygen in the standard.



The  $\delta^2H$  and  $\delta^{18}O$  values of groundwaters analysed across the Study Area are presented in Table 4, and on Figure J along with the Global Meteoric Water Line (GMWL) (Craig 1961) and a local meteoric water line developed for the Okanagan (Okanagan Meteoric Water Line; OMWL) (Wassenaar et al., 2009). The meteoric water lines show the linear relationship between the  $\delta^2H$  and  $\delta^{18}O$  values of precipitation globally (GMWL) and within the Okanagan (OMWL). The  $\delta^2H$  values of groundwaters analysed across the Study Area are presented on Figure K. The accuracy in the reported values was  $\pm 2.0\%$  for  $\delta^2H$  and  $\pm 0.2\%$  for  $\delta^{18}O$ .

The  $\delta^2H$  and  $\delta^{18}O$  values of groundwaters analysed at the Study Area plot in a relatively straight line near the GMWL and OMWL (Figure J), indicative that groundwaters are recharged predominantly by regional precipitation. The groundwater samples that plot at the bottom left-hand corner of the plot (i.e., samples collected in the central portion of the Study Area at wells 840, 726, 000, 026 and 180) exhibit strongly depleted isotopic signatures (i.e., more negative  $\delta^2H$  and  $\delta^{18}O$  values), indicative that the groundwaters are recharged by the infiltration of precipitation originating at higher elevations in the catchment and at colder temperatures (i.e., snow and/or early spring rains) and that, upon snowmelt, travels along deeper bedrock fractures. The groundwater samples that plot above and to the right of the strongly depleted samples (i.e., samples collected at the east, south and west ends of the Study Area at wells 412, 021 and 120, respectively) are relatively more enriched (i.e., less negative  $\delta^2H$  and  $\delta^{18}O$  values), indicative of recharge from snow and spring/fall rains that has fallen at lower elevations in the catchment(s) and travels into relatively shallower bedrock fractures and the confined sand and gravel aquifer.





Figure J: d2H - d18O cross plot showing the isotopic compositions of groundwater samples collected during the Phase 2 Groundwater Study.





Figure K:Site plan showing the distribution of  $\delta^2 H$  values (‰) of groundwater samples collected across the Study Area during the Phase 2 Groundwater Study.

#### 7.0 DISCUSSION OF GROUNDWATER CONDITIONS

#### 7.1 General Groundwater Conditions

Groundwater levels collected at the 16 wells as part of the Phase 2 Groundwater Study showed varying seasonal responses during the monitoring period. The static groundwater elevations at the most upgradient (east) bedrock well (well 412), the most downgradient (west) bedrock wells (wells 000, 896-50394, 896 62006, 189 and 120), and confined sand and gravel well 746 generally decreased between the start of the monitoring period in May/June 2021 until early September 2021 and then gradually increased for the duration of the monitoring period (i.e., until early December 2021), consistent with the seasonal water level response typically observed in the Okanagan over the early summer and late fall. In the Okanagan, in most water wells the lowest water levels are observed in August or September after the relatively dry summer period. Water levels increase slightly in October and November from fall rains, and peak in June or early July as snowmelt and spring rains recharge the aquifer and water is added into storage. Water levels decline over the summer as groundwater is removed from the aguifers by pumping, and little precipitation infiltrates and recharges the aquifer system. Groundwater flows from storage into streams or lakes, and as a result, groundwater levels decrease, reaching the lowest levels again in August or September. At bedrock well 233 (north end of Study Area), water levels did not start to increase until November 2021; while the water levels at bedrock wells (from east to west) 731, 726, 180 and 845 continued to decrease after early September 2021 and were lowest in December 2021. As the water level dataset is limited, the reason for the pattern in water levels at bedrock wells 233, 731, 726, 180 and 845 is not clear; however, it may represent a delay in recharge to these wells, where the fracture network(s) at these wells may not be directly connected to surface recharge from local fall rain events and may be recharged to a larger extent by higher elevation precipitation (snowmelt). Additional long-term water level data would be required at the 16 monitored wells to confirm if the water levels recover to a consistent level annually after spring freshet.

The groundwater levels at the 10 actively pumping wells showed varying responses to pumping (Figure L), including oscillatory responses at wells 840, 704 and 021 and at well 026 during the summer of 2021, and large drawdowns at some wells, including drawdowns on the order of 60 m at bedrock wells in the Wilson-Jackson Road area (wells 840 and 726). The varying responses to pumping are inferred to be related to groundwater use and to the heterogeneity of the bedrock, where the bedrock fractures at some locations are less conductive (as supported by the relatively low hydraulic conductivity values estimated from the pumping tests at wells 726 and 180) and bedrock fractures at other locations relatively more conductive (as inferred by water levels at wells 000 and 189). The larger groundwater fluctuations in some areas are also inferred to reflect a lower storage capacity of the aquifer materials in those areas.

In general, additional monitoring of the water levels across the Study Area would be required to evaluate the long-term trends in water levels and to better understand how precipitation (recharge) and groundwater use (pumping) influence aquifer levels temporally and spatially within the Study Area, and the potential for cumulative increases in pumping.





Figure L: Plan showing water level trends at monitored wells that were actively pumping during the Phase 2 Groundwater Study. Refer to each individual chart in Appendix C for further details.

The water isotope data suggest that groundwater flow across the Study Area occurs within shallow and deep groundwater flow systems. The shallow groundwater flow system is recharged by snow and spring/fall rains that fall at lower elevations in the catchment(s) and travel into relatively shallower bedrock fractures and the confined sand and gravel aquifer. The deeper groundwater flow system is recharged by the infiltration of precipitation originating at higher elevations in the catchment and at colder temperatures (i.e., snow and/or early spring rains) and that, upon snowmelt, travels along deeper bedrock fractures. While the water quality data (water types) are generally consistent with this model, the different water types at some wells may be representative of the interaction of groundwater with different flow paths and/or bedrock types.

## 7.2 Groundwater Supply Potential

Based on the results of the well survey and Golder's assessment of groundwater levels collected at the 16 wells during the monitoring period, five areas have been identified across the Study Area where groundwater availability issues exist and where the groundwater supply potential is inferred to be limited are:

- Wilson-Jackson Road-upper Keddleston-Clearview Roads
- within the drainage areas of the tributaries of BX Creek
- confined sand and gravel aquifer at the south end of Study Area
- west (downgradient) end of Study Area
- east (upgradient) end of Study Area

#### 7.2.1 Wilson-Jackson Road, Upper Keddleston Road and Clearview Road

Water wells monitored on Wilson-Jackson, upper Keddleston and Clearview Roads include bedrock wells 840, 026, 726, 704, 180 and 000. Based on the findings of the Phase 2 Groundwater Study, water levels and water quality in bedrock Aquifer 351 were variable and the variability is inferred to be a result of the location and rate of seasonal precipitation recharge, groundwater use and the heterogenous nature of the bedrock aquifer and fracture network(s). The following groundwater issues were identified:

- low hydraulic conductivity of the bedrock in the area of Wilson-Jackson Road and upper Keddleston Road (as supported by the pumping tests at wells 726 and 180 by Golder, and the pumping test analyses conducted by Carmichael et al. [2009])
- large water level drawdowns observed during pumping at wells 840, 026 and 180
- two of the monitored wells (wells 804 and 704) exhibited drawdown of water levels below the reported depths of water-bearing fractures.
- while well 000 on Clearview Road itself does not appear to exhibit groundwater availability or well supply issues, two properties on Clearview Road reported dry wells to drilled depths of approximately 90 m bgs and 260 m bgs (RDNO personnel, pers. comm., October 2021). Information provided by the RDNO to Golder indicates that additional water well users on Clearview Road have also experienced groundwater availability issues (RDNO personnel, pers. comm., October 2021); however, these issues are inferred to be related to the shallow alluvial aquifers and are discussed below.

Based on the well survey responses received for wells completed in this area, four of the 12 bedrock well owners reported that they had not experienced groundwater availability issues.

Based on the overall findings, it appears that the groundwater supply potential in bedrock Aquifer 351 in this area is limited (Figure M).



The results of the well survey also identified a groundwater availability issue at a well completed in the confined sand and gravel Aquifer 349 on Wilson-Jackson Road (well 607; Figure M). Based on the approximate extents of Aquifer 349, it appears that this well may be completed at the northwest (upgradient) extent of Aquifer 349. The addition of long-term monitoring wells at locations along the west-northwest edge of the confined sand and gravel aquifer would be required to confirm the findings of the well survey, and to assess the groundwater supply potential in this area.



Figure M: Red circle is the approximate area of Wilson-Jackson Road, upper Keddleston Road and Clearview Road where groundwater availability or well supply issues were noted by Golder during this Phase 2 Groundwater Study or were reported to the RDNO.

#### 7.2.2 Drainage Areas Along Tributaries of BX Creek

Based on the well survey, groundwater availability issues in the Clearview Road area were reported at wells completed in shallow, unconfined alluvial deposits within the drainage areas of the tributaries of BX Creek (and not associated with Aquifer 349) (Figure N). The RDNO subsequently reported to Golder that all but one property on Clearview Road now uses a cistern for water storage (RDNO personnel, pers. comm., October 2021). It is noted that water levels and water quality in the shallow alluvial deposits were not monitored by Golder during the Phase 2 Groundwater Study.

Based on the information provided by the RDNO to Golder and/or communicated to Golder by area residents, there were reports of a lack of (to no) groundwater in wells over the summer and fall of 2021 in the Chew Road and Jordashe Road area (Meakins Creek drainage) and Wilson-Jackson Road area (Figure N). In addition, it was reported that small creek beds in these areas had also dried up at this time. The groundwater in these wells (and, correspondingly, the inferred baseflow for the small creeks) is inferred to be associated with shallow, unconfined alluvial deposits that are present within the drainage areas of the tributaries of BX Creek (and not associated with Aquifer 349). It is possible that less precipitation at lower elevations in the winter of 2020/2021 followed by dry climate conditions in the late spring/summer of 2021, possibly coupled with increased pumping for irrigation purposes during the summer months, limited recharge to these shallow, alluvial deposits. Past pumping tests in these water-bearing deposits have shown "sufficient" groundwater; and it is understood that RDNO proof of water bylaw requirements would have been met at the time of development.

These results suggest that groundwater availability is relatively low in the alluvial deposits within the central portion of the Keddleston area (Figure N), and a sustainable groundwater source may be limited in this area, particularly during drier years. The addition of long-term monitoring wells in these alluvial deposits would be required to assess seasonal water level patterns, particularly during drier periods, and to confirm the findings of the well survey.





Figure N: Light green circle is the approximate area of Chew Road, Jordashe Road, Wilson-Jackson Road and Clearview Road where groundwater availability and groundwater sustainability issues were reported to the RDNO.

#### 7.2.3 Confined Aquifer 349 at South End of Study Area

Relatively large drawdowns were noted during pumping at the two wells completed in the confined sand and gravel aquifer at the south end of Study Area (wells 746 and 021) (Figure O). During the monitoring period, the available pumping levels approached the inferred well bottom depth at well 746 and groundwater was not present at well 021 during the October 2021 monitoring event.

The findings of this Phase 2 Groundwater Study at wells 746 and 021 do not support the general statement made in Golder's 2020 study that "....within the Study Area extents, sand and gravel Aquifer 349 is considered to have a higher relative potential to supply future development to individual properties compared to Aquifer 351". While productive wells are present in Aquifer 349; the findings of this Phase 2 Groundwater Study show that there is variability in the groundwater potential of Aquifer 349, and the potential for a sustainable groundwater supply is limited along the west-central edge of Aquifer 349, where water levels in the aquifer were monitored (Figure O).





Figure O: Dark green circle is the approximate area at the west central edge of Aquifer 349 where groundwater availability issues were noted by Golder during this Phase 2 Groundwater Study.

#### 7.2.4 West (Downgradient) End of Study Area

Based on the well survey, two wells on McLennan Road at the west (downgradient) end of the Study Area have experienced groundwater availability issues: well 189 was reportedly deepened as the original well had gone dry, and well 432, an approximate 49 m deep well, experiences water shortages in the summer months.

Based on the findings of this Phase 2 Groundwater Study, wells 120 and 189 at the western most (downgradient) end of the Study Area exhibited the largest seasonal variations during the monitoring period (16 m and 8 m of seasonal water level variations, respectively), as did bedrock well 233, a non-pumping well at the north end of McLennan Road (5 m of seasonal water level variations). The larger differences in seasonal groundwater elevations at these three wells may be influenced by higher groundwater use in this area during the summer months, as corroborated by the relatively higher number of residential properties in the area of McLennan Road

and Mountridge Road relative to other parts of the Study Area. Pumping activities at well 120 resulted in additional water level drawdowns on the order of 10 to 20 m; and the vertical distance between the lowest pumping groundwater elevation and the depth of the well bottom was 10 m.

Based on the overall findings, it appears that the groundwater supply potential in bedrock Aquifer 351 at the west end of the Study Area may be limited (Figure P) and will require future proof of water assessments for subdivision or development approvals in this area to characterize the groundwater supply potential sufficiently, and groundwater protection and conservation measures should be considered. It is further noted that this area is downgradient of Wilson-Jackson, upper Keddleston and Clearview Roads, an area that has also exhibited groundwater availability issues (refer to Section 7.2.1). Groundwater use (i.e., pumping) in these upgradient areas where the hydraulic conductivity of the bedrock is interpreted to be relatively lower may limit regional groundwater flow (i.e., supply) to the west end of the Study Area.





Figure P: Purple circle is the approximate area at the west (downgradient) end of the Study Area where groundwater availability issues were noted by Golder during this Phase 2 Groundwater Study.

### 7.2.5 East (Upgradient) End of Study Area

The well survey responses for wells completed at the east (upgradient) end of the Study Area did not report groundwater availability issues. Based on the well survey, the well owner of well 412 reported that the current well was deepened in 2004, as the well yield of the original shallower well had decreased by an order of magnitude following the drought and fires in 2002 and 2003. The well has not experienced groundwater availability issues since it was deepened. At well 731, the vertical distance between the lowest pumping groundwater elevation and the depth of the well bottom was approximately 5 m, and the water levels continued to decrease after early September 2021 and were lowest in December 2021. In spite of these observations, the owner of well 731 did not report groundwater availability issues during the monitoring period.



Based on the overall findings, while groundwater availability issues were not reported at the east (upgradient) end of the Study Area, groundwater supply potential in bedrock Aquifer 351 in this area may be limited, particularly if future proof of water assessments for subdivision or development approvals in this area have not thoroughly and appropriately characterized the groundwater supply and groundwater protection measures have not been considered (Figure Q).



Figure Q: Blue circle is the approximate area at the east (upgradient) end of the Study Area where groundwater availability or well supply issues were noted by Golder during this Phase 2 Groundwater Study or were reported to the RDNO.

#### 8.0 CONCLUSIONS

Based on the water level trends at wells monitored by Golder as part of the Phase 2 Groundwater Study, groundwater concerns were identified for wells completed in bedrock Aquifer 351 in the area of Wilson-Jackson-upper Keddleston-Clearview Roads, and at the west (downgradient) and east (upgradient) ends of the Study Area. Concerns were also identified for two wells completed in confined sand and gravel deposits of Aquifer 349, at the south end of the Study Area. Groundwater concerns identified for Aquifer 351 and 349 included relatively large seasonal fluctuations in water levels, large drawdowns during pumping and/or little separation between the lowest pumping elevations and the approximate depth to bottom of the well. Groundwater concerns in shallow alluvial deposits associated with drainage areas of the tributaries of BX Creek were also reported by residences to the RDNO.

The Phase 2 Groundwater Study assessed that the groundwater supply potential of bedrock Aquifer 351 is limited in the area of Wilson-Jackson-upper Keddleston-Clearview Roads and may be limited at the west (downgradient) and east (upgradient) ends of the Study Area, particularly with the addition of future pumping wells in these areas. These findings are consistent with Golder's 2020 study where it was assessed that the potential for additional groundwater development of Aquifer 351 was generally considered to be limited. Golder's 2020 study indicated that areas at the downgradient (west) end of the aquifer had potential to supply groundwater to future developments in that part of the Study Area; however, based on the findings of the current Phase 2 Groundwater Study, groundwater availability issues were identified at the downgradient (west) end of the aquifer. Although no direct correlation was apparent between the water levels in the monitored wells, the cumulative effects of groundwater use (i.e., pumping) is inferred to influence groundwater levels in the western portion of Aquifer 351, and over-pumping may result in further impacts to the groundwater supplies of existing groundwater users. The current Phase 2 Groundwater Study also demonstrates the heterogeneity of bedrock Aquifer 351, as reflected by the variability in the yields and water level responses observed for wells completed in this aquifer.

When using a water balance approach, Golder's 2020 study assessed that Aquifer 349 had a higher relative potential to supply groundwater for future development compared to Aquifer 351; however, the findings of this current Phase 2 Groundwater Study show that the potential for a sustainable groundwater supply is limited along the west-central edge of Aquifer 349, where water levels in the aquifer were monitored, and may be limited along the northwest edge of the aquifer, based on reports by residences to the RDNO.

The Phase 2 Groundwater Study assessed that the groundwater supply potential of the shallow alluvial deposits associated with drainage areas of the tributaries of BX Creek may be limited, based on reports by residences to the RDNO; these deposits were not included in the water balance in Golder's 2020 study and water levels were not monitored at wells completed in these deposits during this Phase 2 Groundwater Study.



#### 9.0 RECOMMENDATIONS

As indicated above, additional monitoring of groundwater levels across the Study Area would be required to evaluate long-term trends in water levels, better understand how precipitation (recharge) and groundwater use (pumping) influence aquifer levels temporally and spatially within the Study Area, evaluate whether water levels are fully recharged to seasonal high levels, and to evaluate the potential implications from future development (i.e., increases in groundwater use). Therefore, it is recommended that groundwater levels and water quality at the existing monitoring well network is continued to establish baseline conditions and provide the basis to assess seasonal patterns and long-term trends in water levels and water quality. The data from the monitoring program can then be used to corroborate the findings of this Phase 2 Groundwater Study and to enable a more thorough assessment of water level responses relative to seasonal recharge of precipitation, groundwater use and aquifer properties. Consideration should be given to augmenting the existing monitoring well network with additional wells in Aguifer 349 and with wells in the shallow alluvial deposits, including along the Meakins Creek drainage and other drainage areas identified within the area shown in light green on Figure N. Development of a numerical flow model will provide the technical basis to assess current and potential future groundwater use in the Study Area, along with the potential implications of climate change. It is recommended that the additional groundwater monitoring is conducted and the numerical model is developed before the RDNO consider accepting new applications for development.

The RDNO should consider regulatory approaches to support sustainable development in the Keddleston area with respect to groundwater supply. Hydrogeological assessments that are required to demonstrate evidence of potable water supply should be strengthened to require a pumping test that is conducted in accordance with the provincial Pumping Test Guide to demonstrate the sustainable well yield.

Non-regulatory groundwater protection measures should also be considered to protect water supplies for existing and future groundwater users as well as EFNs in surface water bodies. These recommendations are discussed below.

## 9.1 Long-Term Monitoring and Refined Water Balance Analyses

The recommendations for long-term monitoring at the Study Area include the following:

- Water wells that are instrumented with dataloggers should continue to be monitored, with dataloggers downloaded on a quarterly basis and corroborated with manual water level measurements. The quarterly data should be reviewed by a qualified professional hydrogeologist and used to augment the findings of this Phase 2 Groundwater Study.
- The existing monitoring well network should be augmented with additional water wells, including water wells completed in Aquifer 349 and the shallow alluvial deposits along tributaries of BX Creek.
- Groundwater samples should be collected at all monitored wells and used in conjunction with the long-term water levels to confirm sources of recharge; it is recommended that the groundwater quality monitoring event be conducted in the late summer when groundwater levels in the Study Area aquifers are, for the most part, at their lowest.
- Golder's 2020 water balance should be updated to include the alluvial aquifer deposits in the estimate of groundwater availability across the Study Area, and to refine the water balance estimates for Aquifers 351 and 349.



Following review and analysis of the data from the long-term monitoring program, it is recommended that a numerical groundwater flow model be developed for the Study Area to conduct quantitative water budgets and to predict cumulative water level drawdowns in key areas of the aquifers under future development and climate change scenarios. The numerical model, which would include the alluvial aquifer deposits, would provide a technical basis to support decision-making regarding the sustainability of additional development in different portions of the Study Area, including the potential implications of developing the additional 350 to 400 residences that could potentially be developed under current zoning. The RDNO should assess regulatory options to manage development potential in the Study Area, as discussed in the following sections.

#### 9.2 Groundwater Protection and Management Measures

#### 9.2.1 Regulatory Considerations

#### 9.2.1.1 Revisions to Evidence of Potable Water Supply Requirements in Bylaws

It is recommended that the evidence of potable water supply requirements for wells be strengthened in the RDNO Subdivision Servicing Bylaw 2600 (RDNO, 2013) and RDNO Building Bylaw 2670 (RDNO, 2015) to require a more comprehensive assessment of aquifer conditions that demonstrates a sustainable potable water supply is available. Evidence of sustainable potable water supply for wells should include the following:

- Assessment must include a pumping test that is consistent with the provincial Pumping Test Guide and at least 72-hours in duration for bedrock aquifers and 48-hours in duration for unconfined aquifers. The long-term sustainable yield of a well, which will be estimated based on the results of the pumping test, cannot be greater than the rate that was applied for the pumping test. A well yield test, defined in RDNO (2013) as "a test using bailing or air lifting methods to determine a rough estimate of how much water a groundwater well can produce" should not be used to demonstrate sustainable well yield and a driller's estimate should not be used as a proxy for an estimate of the long-term sustainable well yield that is based on a pumping test.
- The static water level in the pumping well and observation well(s) should be monitored for a minimum of one week prior to the pumping test to assess pre-test trends and to provide the basis to estimate what the static water level is expected to be at the end of the testing period (i.e., projected to the end of the testing period to account for an increasing or decreasing trend).
- Water level recovery must be monitored in general accordance with the provincial Pumping Test Guide and for a recovery period not less than the pumping period. Wells that have not achieved 100% recovery relative to what static is projected to be at the end of the test (based on the pre-test monitoring data described above) must be further assessed by the qualified professional. Water that is pumped out of a bedrock well comes from storage in the fracture network, and as the fracture(s) that store and transmit groundwater are drained, they can take a relatively long time to recharge, resulting in low recovery rates. In such cases, interpretation of the data from the pumping test only (i.e., not including the recovery data) could result in an overestimation of the sustainable yield of the well, and the pumping rate at which the well was tested may not be sustainable in the long term.
- At least one observation well that is completed in the same aquifer and within the same fracture network, must be monitored during the pumping test and recovery period. Observation wells should be located on the same property as the pumping well or on adjacent property(ies), and within 100 m of the pumping well. Monitoring wells that are part of the monitoring well network established as part of this Phase 2 Groundwater Study may be used as observation wells, if they meet the above criteria.



Pumping tests are to be conducted in the dry part of the year when groundwater levels are lowest. Based on the water level trends assessed in this Phase 2 Groundwater Study, this period is generally in late summer; however, at some wells, the lowest water levels were measured in early winter (December 2021). The long-term water level data from this Phase 2 Groundwater Study will guide the timing of pumping tests in different parts of the Study Area; however, the RDNO should consider requesting that proponents obtain water level monitoring data for a minimum of one year to demonstrate when seasonal low water levels occur and the appropriate time of year to conduct a pumping test.

- Well capacity tests must be supervised by qualified professionals, and only a report that is signed and sealed by a qualified professional will be accepted by the RDNO as evidence of a well being capable of providing a potable water supply.
- A pumping test must be conducted for each well that is proposed for use. Where applications to the RDNO include more than one dwelling (and therefore more than one well) or are for multiphase developments, the pumping tests should be conducted simultaneously at all wells included in the application. For example, if a subdivision application is for three properties, where each property would consist of one dwelling and one potable water well, the pumping test program should be designed such that the three water wells are pumped at the same time, for the same duration, and each at a pumping rate that is at least the minimum required rate.

The above requirements could be outlined in a schedule that the qualified professional completes and signs to document that key requirements have been satisfied.

The RDNO should also consider an arrangement where an independent qualified hydrogeologist is retained to conduct a third party review of hydrogeological assessments.

#### 9.2.1.2 Phased Approach to New Groundwater Use

Based on the results of this Phase 2 Groundwater Study, it is recommended that more information be obtained to support decision-making regarding the sustainability of water supply in the Study Area and the potential for future development. As discussed in Section 9.1, additional groundwater monitoring is required to evaluate seasonal patterns and long-term trends, and a numerical groundwater flow model would provide the technical basis to quantitatively assess current groundwater conditions and predict the potential influence of future development. It is recommended that these tools be put in place before the RDNO consider accepting new applications for development. For existing development applications, it is recommended that the RDNO require, at a minimum, a hydrogeological assessment that is signed and stamped by a qualified professional and includes, for each well that is proposed to be used for water supply, analysis and interpretation of at least one year of continuous groundwater level monitoring data and a pumping test that satisfies the requirements in the preceding section.

Subdivision and development approvals, including existing and future development applications, should consider a phased approach to development to support sustainable development with respect to groundwater supply. For subdivision and development applications requiring multiple wells, the RDNO should only approve the number of properties that would support sustainable development with respect to groundwater supply (this may be less than the proponent's requested number of dwellings). Approvals would be considered on a site-specific basis and would be based on the detailed hydrogeological assessment report prepared by a qualified professional and provided to the RDNO. Further approvals would be contingent upon provision of satisfactory groundwater monitoring data during buildout of the approved number of dwellings.



To inform the planning process, the RDNO could consider conducting pilot pumping tests in key areas of Keddleston where future developments are expected to occur. On condition of approval by the well owners, existing water wells would be tested simultaneously, as described in Section 9.2.1.1. This would provide the RDNO with a baseline of conditions with which to base future approvals.

#### 9.2.1.3 Development Permit Areas

The RDNO should consider designating Aquifer Protection Development Permit Areas (DPAs) to control and limit development in areas where groundwater availability issues have been identified, as described in Section 7.2 above. For these DPAs, approval of development permits would be contingent upon specific criteria that should include requirements for groundwater monitoring during initial phases of buildout and prior to approvals of subsequent phases, and implementation of site-specific groundwater protection measures such as limiting site disturbance and impervious surfaces, preserving natural soils and vegetation, and requiring low- to no-water use landscaping designs and alternative water sources such as rainwater harvesting.

#### 9.2.2 Non-Regulatory Considerations

Public education and outreach programs can be used to educate existing and new well owners about the importance of groundwater conservation and to provide them with the tools to assess current water use, evaluate potential groundwater conservation opportunities and implement appropriate measures. It is recommended that the RDNO develop a conservation strategy that advocates for implementation of a household audit program and landscape planning and irrigation initiatives to reduce groundwater demand and encourage the use of alternative water supplies for non-potable uses.



#### **10.0 LIMITATIONS**

This report was prepared for the exclusive use of the Regional District of North Okanagan. The assessment was performed according to current professional standards and practices in the groundwater field and has been made using historical and technical data obtained from the sources noted within this report. Except where specifically stated to the contrary, the information contained in this report (including reports, information and data) was provided to Golder Associates Ltd. (Golder) by others and has not been independently verified or otherwise examined by Golder to determine its accuracy or completeness. Golder has relied in good faith on this information and does not accept responsibility of any deficiency, misstatements or inaccuracies contained in the report as a result of omissions, misinterpretation and/or fraudulent acts of the persons interviewed or contacted, or errors or omissions in the reviewed documentation. We accept no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or fraudulent acts of persons interviewed or contacted.

The services performed as described in this report were conducted in a manner consistent with the level of care and skill normally exercised by other members of the engineering and science professions currently practising under similar conditions, subject to the time limits and financial and physical constraints applicable to the services. Hydrogeological investigations and the development of conceptual site models are dynamic and inexact sciences. They are dynamic in the sense that the state of any hydrological-hydrogeological system is changing with time, and in the sense that the science is continually developing new techniques to evaluate these systems. They are inexact in the sense that subsurface conditions are not known between the specific investigation locations, and there is invariably a lack of complete information both spatially and temporally about the geological and hydrogeological conditions. The validity and accuracy of the conceptual model depends on the amount of data available relative to the degree of complexity of the geologic formations, the study area hydrogeology, and on the quality and degree of accuracy of the data entered. Therefore, every conceptual model is a simplification of reality and the model described in this report is not an exception.

The content of this report is based on information collected during the study, our present understanding of site conditions, the assumptions stated in this report, and our professional judgement in light of such information at the time of this report. This report provides a professional opinion and, therefore, no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of the report. If new information is discovered in future work, or if the assumptions stated in this report are not met, Golder should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

Any use which third parties make of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder Associates Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.



#### 11.0 CLOSURE

We trust that this report provides you with the information you require at this time. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

Mark Bolton, MSc, PGeo

Mak Bo

Associate, Senior Hydrogeologist

J'Sam'

Jillian Sacré, MSc, PGeo Principal, Senior Hydrogeologist

OK/PA/MAB/JPS/syd

Golder and the G logo are trademarks of Golder Associates Corporation

M. A. BOLTON #29787

SCIEN

https://golderassociates.sharepoint.com/sites/127973/project files/6 deliverables/3.0\_issued/20144760-004-r-rev1/20144760-004-r-rev1-keddleston phase 2 gw study 29jun\_22.docx

PERMIT TO PRACTICE #1003064 Engineers & Geoscientists BC



#### 12.0 REFERENCES

Carmichael, V., Allen, D.M., Gellein, C., and Kenny, S. 2009. Compendium of Aquifer Hydraulic Properties from Re-evaluated Pumping Tests in the Okanagan Basin, British Columbia. 2033 pp.

- Clark, ID and Fritz, P. 1997. Environmental Isotopes in Hydrogeology. CRC Press.
- Freeze, R.A., and Cherry, J.A. 1979. Groundwater. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Government of Canada (EC). 2022. Climate Data for Vernon Auto and Vernon Silver Star Lodge weather stations, <u>Historical Data - Climate - Environment and Climate Change Canada (weather.gc.ca)</u>. Accessed March 2022.
- Golder Associates Ltd. (Golder). 2007. Groundwater Potential Evaluation for the Keddleston Area, Electoral Area C, Regional District of North Okanagan, BC. Report submitted to the RDNO on 15 March 2007.
- Golder Associates Ltd. (Golder). 2020. Keddleston Groundwater Study. Report submitted to the RDNO on 31 January 2020.
- Health Canada, 2020, Guidelines for Canadian Drinking Water Quality. Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment, September 2020.
- Regional District of North Okanagan (RDNO). 2013. Subdivision Servicing Bylaw No. 2600
- Regional District of North Okanagan (RDNO). 2015. Building Bylaw No. 2670
- RDNO personnel, pers. comm., October 2021.
- Wassenaar, L.I., Athanasopoulos, P., and Hendry, M.J. (2011). Isotope Hydrology of Precipitation, Surface and Ground Waters in the Okanagan Valley. Journal of Hydrology 411, 37-48.



Printed on: 2022-03-10

|           |                   | _                       | _                            | _         | _    | _         | _        | _        | _         | _         | _         | _         | _         | _         | _        | _         | _         | _        | _        |
|-----------|-------------------|-------------------------|------------------------------|-----------|------|-----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|----------|----------|
| .31       | Bedrock           | 59.5                    | 0.00                         | Elevation | Œ    |           | 908.33   |          |           | 905.67    |           |           |           | 906.75    |          |           |           |          | 904.86   |
| _         | Be                | 6                       | 6                            | Depth     | Œ    |           | 51.15    |          |           | 53.81     |           |           |           | 52,734    |          |           |           |          | 54.62    |
| 412       | Bedrock           | 1019.2                  | 952.1                        | Elevation | Œ    |           | 1011.74  |          |           | 1011.27   |           |           |           | 1010.45   |          |           |           | 1010.92  |          |
| 4         | Bed               | 5                       | 95                           | Depth     | Œ    |           | 7.42     |          |           | 7,892     |           |           |           | 8,715     |          |           |           | 8.24     |          |
| Σ.        | Grave             | 767.5                   | 735.8                        | Elevation | Ê    |           |          | 738.82   |           | 737.14    |           |           |           | 736.61    |          |           |           | 739.69   |          |
| 021       | Sand/Grave        | 767                     | 73                           | Depth     | Œ    |           |          | 28.73    |           | 30,409    |           |           |           | 30,936    | Dry      |           |           | 27.86    |          |
| 026       | 20ck              | 8.0                     | 8.8                          | Elevation | Œ    | 786.139   |          |          |           |           |           |           |           |           |          |           |           |          |          |
| 8         | Bedrock           | 930.8                   | 748                          | Depth     | Œ    | 144.7     |          |          |           |           |           |           |           |           |          |           |           |          |          |
| 000       | Sedrock           | 794.0                   | 647.7                        | Elevation | Œ    |           |          | 685.127  |           | 683.534   |           |           |           | 682.992   |          |           |           | 683.277  |          |
| ō         | Bed               | 79                      | 64                           | Depth     | Ê    |           |          | 108.9    |           | 110,493   |           |           |           | 111,035   |          |           |           | 110.75   |          |
| 90        | Bedrock           | 6.9                     | 4.6                          | Eevation  | Œ    |           | 834.503  |          |           | 826.540   |           |           |           | 826.445   | 826.253  |           | 825.688   | 810.053  |          |
| -         | Bec               | 82                      | 78                           | Depth     | Œ    |           | 22.4     |          |           | 30,363    |           |           |           | 30,458    | 30,65    |           | 31.215    | 46.85    |          |
| 704       | Bedrock           | 73.3                    | 781.8                        | Elevation | Œ    |           | 790.181  |          |           | 791.505   |           |           |           | 792.544   |          |           |           | 787.981  |          |
| _         | Be                | 80                      | 22                           | updəQ     | Œ    |           | 83.13    |          |           | 81.806    |           |           |           | 80,767    |          |           |           | 85,33    |          |
| 726       | Bedrock           | 914.5                   | 33.4                         | Elevation | Œ    |           |          |          |           | 894.334   |           |           |           |           | 892 607  | 892.208   |           | 892.104  |          |
| -         | Be                | ò                       | 2                            | Depth     | Œ    |           |          |          |           | 20,185    |           |           |           |           | 21.912   | 22,311    |           | 22.415   |          |
| 840       | Bedrock           | 31.2                    | 36.1                         | Elevation | Ξ    |           | 883,374  |          |           | 844.787   |           |           | 827,009   |           |          |           |           |          | 839,939  |
| _         | æ                 | 6                       | 7                            | Depth     | Ξ    |           | 47.8     |          |           | 86,387    |           |           | 104,165   |           |          |           |           |          | 91,235   |
| 845       | Bedrock           | 15.6                    | 572.3                        | Elevation | Œ    | 684.976   |          |          |           |           | 682.364   |           | 682,346   |           |          |           |           |          | 681,191  |
|           | æ                 | _                       | 20                           | Depth     | Ē    | 9'08      |          |          |           |           | 33,212    |           | 33,23     |           |          |           |           |          | 34,385   |
| 896-50394 | Bedrock           | 28.1                    | 54.9                         | Elevation | Ê    | 706.955   |          |          |           |           | 706,314   |           | 705,850   |           |          |           |           |          | 707.475  |
| 896       | ď                 | -                       | _                            | Depth     | Ē    | 21,12     |          |          |           |           | 21.761    |           | 22,225    |           |          |           |           |          | 20,600   |
| 896-62006 | Bedrock           | 691.1                   | 593.5                        | Elevation | Ξ    | 680.072   |          |          |           |           | 678.393   |           | 678.298   |           |          |           |           |          | 679.437  |
| 68        | ω                 | _                       |                              | Depth     | Ē    | 11,00     |          |          |           |           | 12,679    |           | 12,774    |           |          |           |           |          | 11,635   |
| 746       | Sand/Grave        | 763.9                   | 736.5                        | Elevation | Œ    |           |          | 750.156  |           | 748.758   |           |           | 746.828   |           |          |           |           | 754.436  |          |
|           | Sar               |                         |                              | Depth     | Ē    | L         |          | 13,79    |           | 15.188    |           |           | 17,118    |           |          |           |           | 9.51     |          |
| 189       | Bedrock           | 611.1                   | 568.4                        | Eevation  | Ê    |           |          | 596.330  |           | 590.159   |           |           | 589.227   |           | 588.768  |           |           |          | 589.990  |
|           |                   |                         |                              | Depth     | Ξ    | L         | L        | 14.78    |           | 20,951    |           |           | 21,883    |           | 22,342   |           |           |          | 21.12    |
| 233       | Bedrock           | 769.3                   | 677.8                        | Elevation | Œ    |           |          |          | 767,271   | 766.827   |           |           | 765,381   |           |          |           |           |          | 765.011  |
|           |                   |                         |                              | Depth     | Ξ    |           |          |          | 2.03      | 2.474     |           |           | 3,92      |           |          |           |           |          | 4.290    |
| 120       | Bedrock           | 576.6                   | 17.1 a                       | Elevation | Œ    |           |          | 552.536  |           |           |           |           | 545.723   |           |          |           |           |          | 561,021  |
|           |                   |                         |                              | Depth     | Ē    | L         |          | 24.03    |           |           |           | 29.197    | 30.843    |           |          |           |           |          | 15,545   |
| Location  | Material Screened | Standpipe Elevation (1) | Bottom of Well Elevation (2) |           | Date | 18-May-21 | 1-Jun-21 | 2 Jun 21 | 23-Jun-21 | 15-Jul-21 | 19-Jul-21 | 23 Jul-21 | 11-Aug-21 | 12.Aug-21 | 5-0ct-21 | 15-Nov-21 | 29-Nov-21 | 6-Dec-21 | 7-Dec-21 |

Page 1 of 1

| r                                                         |                   |                        |                       |                      |                       |                       |                     |                       |                       |                       |
|-----------------------------------------------------------|-------------------|------------------------|-----------------------|----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|
| Station                                                   |                   |                        | 120                   | 000                  | 021                   | 412                   | 726                 | 180                   | 026                   | 840                   |
| Sample Control Number                                     |                   | Haalikh Canada CCDWO   | 21K2544-01            | 21K2544-02           | 21K2544-03            | 21K2544-04            | 21K2544-05          | 21L0506-01            | 21L0506-02            | 21L2571-01            |
| Laboratory Sample ID                                      |                   | Health Canada GCDWQ    | 21K2544-01            | 21K2544-02           | 21K2544-03            | 21K2544-04            | 21K2544-05          | 21L0506-01            | 21L0506-02            | 21L2571-01            |
| Sample Date                                               |                   |                        | 2021-11-18            | 2021-11-18           | 2021-11-18            | 2021-11-18            | 2021-11-18          | 2021-12-02            | 2021-12-02            | 2021-12-16            |
| Certificate of Analysis                                   |                   |                        | 21K2544               | 21K2544              | 21K2544               | 21K2544               | 21K2544             | 21L0506               | 21L0506               | 21L2571               |
| Field Measured                                            | Units             | 7.0.40.5               | 7.40                  | 7.70                 | 8.15                  | 7.96                  | 0.42                | 7.68                  | 8.22                  | 8.41                  |
| pH<br>Conductivity, field measured                        | uS/cm             | 7.0-10.5               | 7.13<br>1,244         | 7.79<br>1,823        | 1,455                 | 7.96                  | 8.42<br>1,040       | 2,574                 | 944                   | 512                   |
| Redox potential                                           | mV                | -                      | 281.7                 | 376.9                | 401.4                 | 397.7                 | 402.2               | 104.7                 | 51.4                  | 214.6                 |
| Temperature                                               | °C                | ≤15 (AO)               | 11.0                  | 9.7                  | 11.1                  | 7.1                   | 10.1                | 11.0                  | 10.7                  | 5.1                   |
| Turbidity                                                 | NTU               | See Note 1             | -                     | 1,51                 | 1.46                  | 0.45                  | 83,20               | -                     | -                     | -                     |
| General Parameters Alkalinity, Total (as CaCO3)           | mg/L              | N/A                    | 276                   | 439                  | 259                   | 352                   | 353                 | 394                   | 320                   | 349                   |
| Alkalinity, Phenolphthalein (as CaCO3)                    | mg/L              | N/A                    | <1.0                  | <1.0                 | <1.0                  | <1.0                  | <1.0                | <1.0                  | <1.0                  | 2.6                   |
| Alkalinity, Bicarbonate (as CaCO3)                        | mg/L              | N/A                    | 276                   | 439                  | 259                   | 352                   | 353                 | 394                   | 320                   | 344                   |
| Calculated as HCO3                                        | mg/L              |                        | 336                   | 535                  | 316                   | 429                   | 430                 | 480                   | 390                   | 419                   |
| Alkalinity, Carbonate (as CaCO3)                          | mg/L              | N/A                    | <1.0                  | <1.0                 | <1.0                  | <1.0                  | <1.0                | <1.0                  | <1.0                  | 5.1                   |
| Alkalinity, Hydroxide (as CaCO3)<br>Ammonia, Total (as N) | mg/L<br>mg/L      | N/A<br>See Note 2      | <1.0<br><0.050        | <1.0<br><0.050       | <1.0<br><0.050        | <1.0<br><0.050        | <1.0<br>0.057       | <1.0<br>0.056         | <1.0<br><0.050        | <1.0<br><0.050        |
| Nitrogen, Total Kjeldahl                                  | mg/L              | N/A                    | 0.553                 | <0.050               | 0.157                 | <0.050                | 0.059               | 0.155                 | 0.09                  | <0.050                |
| Solids, Total Dissolved                                   | mg/L              | ≤500 (AO)              | 806                   | 1210                 | 965                   | 438                   | 679                 | 981                   | 558                   | 548                   |
| Solids, Total Suspended                                   | mg/L              | N/A                    | <2.0                  | <2.0                 | <2.0                  | <2.0                  | 151                 | 0.72                  | 0.55                  | <u>-</u>              |
| pH<br>Conductivity (EC)                                   | pH units<br>uS/cm | 7.0-10.5<br>N/A        | 7.23                  | 7.58                 | 7.67                  | 7.41<br>710           | 8.16<br>1040        | 7.78<br>1340          | 7.95<br>837           | 8.33                  |
| Conductivity (EC) Microbiological Parameters              | u5/cm             | IN/A                   | 1230                  | 1860                 | 1320                  | /10                   | 1040                | 1340                  | 03/                   | 896                   |
| Coliforms, Total                                          | MPN/100 mL        | None detectable/100 mL | 16                    | 5                    | 276                   | 43                    | <1                  | <1                    | <1                    | <1                    |
| Coliforms, Fecal                                          | MPN/100 mL        | -                      | <1                    | <1                   | <1                    | <1                    | <1                  | <1                    | <1                    | <1                    |
| E. coli                                                   | MPN/100 mL        | None detectable/100 mL | <1                    | <1                   | <1                    | <1                    | <1                  | <1                    | <1                    | <1                    |
| Anions<br>Bromide                                         | ma/l              | N/A                    | <0.10                 | <0.10                | <0.10                 | <0.10                 | <0.10               | <0.10                 | <0.10                 | <0.10                 |
| Chloride                                                  | mg/L<br>mg/L      | N/A<br>≤250 (AO)       | 62.5                  | ₹0.10<br>5.96        | 11.3                  | 1.09                  | 15                  | 1.35                  | 2.9                   | 5.01                  |
| Fluoride                                                  | mg/L              | 1.5                    | 0.14                  | 1.43                 | 0.23                  | 0.12                  | 7.5                 | 1.19                  | 3.39                  | 8.17                  |
| Nitrate (as N)                                            | mg/L              | 10                     | 9.2                   | 0.025                | 0.082                 | <0.010                | <0.010              | <0.010                | <0.010                | 0.024                 |
| Nitrite (as N)                                            | mg/L              | 1                      | <0.010                | <0.010               | <0.010                | <0.010                | <0.010              | <0.010                | <0.010                | <0.010                |
| Sulfate Calculated Parameters                             | mg/L              | ≤500 (AO)              | 278                   | 635                  | 518                   | 72.3                  | 176                 | 410                   | 157                   | 107                   |
| Hardness, Total (as CaCO3)                                | mg/L              | -                      | 610                   | 600                  | 659                   | 385                   | 105                 | 620                   | 171                   | 64.4                  |
| Nitrate+Nitrite (as N)                                    | mg/L              | -                      | 9.2                   | 0.0252               | 0.0824                | <0.0100               | <0.0100             | <0.0100               | <0.0100               | 0.0243                |
| Nitrogen, Total                                           | mg/L              | -                      | 9.75                  | <0.0500              | 0.239                 | <0.0500               | 0.059               | 0.155                 | 0.09                  | <0.0500               |
| Total Metals                                              |                   |                        | 0.0440                | -0.0050              | -0.0050               | -0.0050               | 4.40                | 0.0040                | 0.0000                | 0.0474                |
| Aluminum<br>Antimony                                      | mg/L<br>mg/L      | 0.006                  | 0.0443<br><0.00020    | <0.0050<br><0.00020  | <0.0050<br><0.00020   | <0.0050<br><0.00020   | 4.18<br>0.00026     | 0.0219<br><0.00020    | 0.0062<br><0.00020    | 0.0171<br><0.00020    |
| Arsenic                                                   | mg/L              | 0.010                  | <0.00050              | <0.00050             | 0.00076               | <0.00050              | 0.00054             | <0.00050              | <0.00050              | <0.00050              |
| Barium                                                    | mg/L              | 2.0                    | 0.0106                | 0.0086               | 0.0265                | 0.029                 | 0.0613              | 0.0155                | 0.0236                | 0.0146                |
| Beryllium                                                 | mg/L              | -                      | <0.00010              | <0.00010             | <0.00010              | <0.00010              | 0.00037             | <0.00010              | <0.00010              | <0.00010              |
| Bismuth<br>Boron                                          | mg/L<br>mg/L      | <del>-</del><br>5      | <0.00010<br><0.0500   | <0.00010<br><0.0500  | <0.00010<br><0.0500   | <0.00010<br><0.0500   | <0.00010<br><0.0500 | <0.00010<br><0.0500   | <0.00010<br><0.0500   | <0.00010<br><0.0500   |
| Cadmium                                                   | mg/L              | 0,007                  | 0.000044              | 0.000048             | <0.000010             | 0.000023              | 0.000194            | 0,000027              | 0.000172              | 0.00008               |
| Calcium                                                   | mg/L              | _                      | 227                   | 127                  | 185                   | 112                   | 32                  | 106                   | 37.7                  | 20.3                  |
| Chromium                                                  | mg/L              | 0.05 <sup>∨I</sup>     | 0.00145               | 0.00055              | <0.00050              | <0.00050              | 0.0108              | <0.00050              | <0.00050              | <0.00050              |
| Cobalt                                                    | mg/L              | -                      | 0.00014               | 0.00052              | <0.00010              | 0.00015               | 0.00291             | 0.00067               | <0.00010              | <0.00010              |
| Copper                                                    | mg/L              | 2 (AO: 1)              | 0.01                  | 0.00441              | 0.00121               | 0.00243               | 0.0228              | 0.0012                | 0.0234                | 0.00093<br>0.026      |
| Iron<br>Lead                                              | mg/L<br>mg/L      | ≤0.3 (AO)<br>0.005     | 0.07<br>0.00075       | 0.172<br>0.00035     | <0.010<br><0.00020    | 0.122<br><0.00020     | 16.7<br>0.00552     | 0.306<br>0.0004       | 0.058<br>0.0082       | 0.0254                |
| Lithium                                                   | mg/L              | 0.003<br>-             | 0.0195                | 0.585                | 0.0218                | 0.0229                | 0.0452              | 0.242                 | 0.0831                | 0.0193                |
| Magnesium                                                 | mg/L              | -                      | 22.7                  | 90.5                 | 61.2                  | 35.5                  | 12                  | 72.6                  | 20.6                  | 3.99                  |
| Manganese                                                 | mg/L              | 0.12 (AO: <0.02)       | 0.00261               | 0.0376               | 0.0162                | 0.0591                | <u>0.191</u>        | <u>0.135</u>          | 0.00496               | 0.00032               |
| Mercury                                                   | mg/L              | 0.001                  | <0.000040             | <0.000040            | <0.000040             | 0.000101              | <0.000040           | <0.000040             | <0.000040             | <0.000040             |
| Molybdenum<br>Nickel                                      | mg/L<br>mg/L      | -<br>-                 | 0.00072<br>0.00243    | 0.00295<br>0.00658   | 0.00966<br>0.00042    | 0.00473<br>0.00141    | 0.011<br>0.00626    | 0.00338<br>0.00301    | 0.00473<br>0.00366    | 0.00383<br>0.00044    |
| Phosphorous                                               | mg/L              | _                      | <0.050                | <0.050               | <0.050                | <0.050                | 0.095               | <0.050                | <0.050                | <0.050                |
| Potassium                                                 | mg/L              | -                      | 3.66                  | 13.6                 | 6.39                  | 4.2                   | 4.54                | 12.9                  | 1.44                  | 1,41                  |
| Selenium                                                  | mg/L              | 0.05                   | 0.00222               | <0.00050             | <0.00050              | <0.00050              | 0.00174             | 0.00092               | 0.00076               | <0.00050              |
| Silicon<br>Silver                                         | mg/L              | -<br>-                 | 12.8<br><0.000050     | 19.4<br><0.000050    | 9.2<br><0.000050      | 10.5<br><0.000050     | 15.9<br><0.000050   | 10.2<br><0.000050     | 7.4<br><0.000050      | 6.5<br><0.000050      |
| Sodium                                                    | mg/L<br>mg/L      | ≤200 (AO)              | 34.3                  | 213                  | 54.9                  | 9.1                   | 223                 | 107                   | 156                   | 190                   |
| Strontium                                                 | mg/L              | 7.0                    | 0.641                 | 3,33                 | 2,2                   | 0.971                 | 0.6                 | 3,66                  | 1.89                  | 0.29                  |
| Sulfur                                                    | mg/L              | <u>-</u>               | 103                   | 240                  | 187                   | 27.2                  | 68.5                | 158                   | 63.6                  | 31.8                  |
| Tellurium                                                 | mg/L              | -                      | <0.00050              | <0.00050             | <0.00050              | <0.00050              | <0.00050            | 0.00052               | <0.00050              | <0.00050              |
| Thallium<br>Thorium                                       | mg/L<br>mg/L      | -<br>-                 | <0.000020<br><0.00010 | 0.000033<br><0.00010 | <0.000020<br><0.00010 | <0.000020<br><0.00010 | 0.000085<br>0.00111 | <0.000020<br><0.00010 | <0.000020<br><0.00010 | <0.000020<br><0.00010 |
| Tin                                                       | mg/L              | _ [                    | <0.00010              | 0.00332              | <0.00010              | <0.00010              | 0.00038             | <0.00010              | 0.00033               | <0.00010              |
| Titanium                                                  |                   | _                      | <0.0050               | <0.0050              | <0.0050               | <0.0050               | 0.0546              | <0.0050               | <0.0050               | <0.0050               |
|                                                           | mg/L              |                        |                       |                      |                       |                       | 1                   |                       | 0.0040                | <0.0010               |
| Tungsten                                                  | mg/L              | <u>-</u>               | <0.0010               | <0.0010              | <0.0010               | <0.0010               | 0.0014              | <0.0010               | <0.0010               |                       |
| Tungsten<br>Uranium                                       | mg/L<br>mg/L      | <u>-</u><br>0.02       | 0.0214                | 0.00143              | 0.015                 | 0.00584               | 0.007               | 0.00508               | 0.000922              | 0.00214               |
| Tungsten                                                  | mg/L              | -<br>0.02<br>≤5.0 (AO) |                       |                      |                       |                       |                     |                       |                       |                       |

| Station                                               |                                              |                     | 120                                                           | 000                                                           | 021                                                            | 412                                                            | 726                                                            | 180                                                           | 026                                                           | 840                                                           |
|-------------------------------------------------------|----------------------------------------------|---------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Sample Control Number                                 |                                              | l                   | 21K2544-01                                                    | 21K2544-02                                                    | 21K2544-03                                                     | 21K2544-04                                                     | 21K2544-05                                                     | 21L0506-01                                                    | 21L0506-02                                                    | 21L2571-01                                                    |
| Laboratory Sample ID                                  |                                              | Health Canada GCDWQ | 21K2544-01                                                    | 21K2544-02                                                    | 21K2544-03                                                     | 21K2544-04                                                     | 21K2544-05                                                     | 21L0506-01                                                    | 21L0506-02                                                    | 21L2571-01                                                    |
| Sample Date                                           |                                              |                     | 2021-11-18                                                    | 2021-11-18                                                    | 2021-11-18                                                     | 2021-11-18                                                     | 2021-11-18                                                     | 2021-12-02                                                    | 2021-12-02                                                    | 2021-12-16                                                    |
| Certificate of Analysis                               |                                              |                     | 21K2544                                                       | 21K2544                                                       | 21K2544                                                        | 21K2544                                                        | 21K2544                                                        | 21L0506                                                       | 21L0506                                                       | 21L2571                                                       |
| Dissolved Metals                                      |                                              |                     |                                                               | 21112011                                                      | 2.1.2011                                                       |                                                                |                                                                | 2.20000                                                       | 2.20000                                                       | 2.2207.                                                       |
| Aluminum                                              | mg/L                                         | _                   | <0.0050                                                       | <0.0050                                                       | 0.0054                                                         | <0.0050                                                        | <0.0050                                                        | <0.0050                                                       | <0.0050                                                       | 0.0055                                                        |
| Antimony                                              | mg/L                                         | _                   | <0.00020                                                      | <0.00020                                                      | <0.00020                                                       | <0.00020                                                       | <0.00020                                                       | <0.00020                                                      | <0.00020                                                      | <0.00020                                                      |
| Arsenic                                               | mg/L                                         | _                   | <0.00050                                                      | <0.00050                                                      | 0.00076                                                        | <0.00050                                                       | <0.00050                                                       | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      |
| Barium                                                | mg/L                                         | _                   | 0.0097                                                        | 0.0073                                                        | 0.0251                                                         | 0.0265                                                         | 0.0199                                                         | 0.015                                                         | 0.0212                                                        | 0.0139                                                        |
| Bervllium                                             | mg/L                                         | _                   | <0.00010                                                      | <0.00010                                                      | <0.00010                                                       | <0.00010                                                       | <0.00010                                                       | <0.00010                                                      | <0.00010                                                      | <0.00010                                                      |
| Bismuth                                               | mg/L                                         | _                   | <0.00010                                                      | <0.00010                                                      | < 0.00010                                                      | <0.00010                                                       | <0.00010                                                       | <0.00010                                                      | <0.00010                                                      | <0.00010                                                      |
| Boron                                                 | mg/L                                         | _                   | <0.0500                                                       | <0.0500                                                       | <0.0500                                                        | <0.0500                                                        | <0.0500                                                        | <0.0500                                                       | <0.0500                                                       | <0.0500                                                       |
| Cadmium                                               | mg/L                                         | _                   | 0.000038                                                      | 0.000019                                                      | <0.000010                                                      | 0.000022                                                       | 0.000012                                                       | 0.000041                                                      | 0.00013                                                       | 0,000022                                                      |
| Calcium                                               | mg/L                                         | _                   | 209                                                           | 105                                                           | 166                                                            | 97.8                                                           | 25.9                                                           | 115                                                           | 36.3                                                          | 19.3                                                          |
| Chromium                                              | mg/L                                         | _                   | <0.00050                                                      | <0.00050                                                      | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      |
| Cobalt                                                | mg/L                                         | _                   | <0.00010                                                      | 0.00043                                                       | <0.00010                                                       | 0.00013                                                        | 0.00016                                                        | 0.00071                                                       | <0.00010                                                      | <0.00010                                                      |
| Copper                                                | mg/L                                         | -                   | 0.021                                                         | 0.00363                                                       | 0.0018                                                         | 0.00266                                                        | 0.00292                                                        | 0.00201                                                       | 0.00287                                                       | <0.00040                                                      |
| Iron                                                  | mg/L                                         | _                   | <0.010                                                        | 0.016                                                         | <0.010                                                         | 0.017                                                          | <0.010                                                         | 0.098                                                         | <0.010                                                        | <0.010                                                        |
| Lead                                                  | mg/L                                         | -                   | 0.00064                                                       | <0.00020                                                      | <0.00020                                                       | <0.00020                                                       | <0.00020                                                       | 0.00025                                                       | 0.00345                                                       | 0.00181                                                       |
| Lithium                                               | mg/L                                         | _                   | 0.01510                                                       | 0.42300                                                       | 0.01710                                                        | 0.01850                                                        | 0.03390                                                        | 0.23800                                                       | 0.07400                                                       | 0.0191                                                        |
| Magnesium                                             | mg/L                                         | -                   | 21.30                                                         | 81.90                                                         | 59.40                                                          | 34.20                                                          | 9.76                                                           | 80.90                                                         | 19.50                                                         | 3,89                                                          |
| Manganese                                             | mg/L                                         | -                   | 0.00046                                                       | 0.0305                                                        | 0.0145                                                         | 0.05                                                           | 0.0108                                                         | 0.128                                                         | 0.00466                                                       | 0.00056                                                       |
| Mercury                                               | mg/L                                         | -                   | <0.000010                                                     | <0.000010                                                     | <0.000010                                                      | <0.000010                                                      | <0.000010                                                      | <0.000010                                                     | <0.000010                                                     | <0.000010                                                     |
| Molybdenum                                            | mg/L                                         | -                   | 0.00053                                                       | 0.00239                                                       | 0.00921                                                        | 0.00429                                                        | 0.00896                                                        | 0.00332                                                       | 0.00413                                                       | 0.00345                                                       |
| Nickel                                                | mg/L                                         | -                   | 0.00129                                                       | 0.00495                                                       | <0.00040                                                       | 0.00095                                                        | 0.00116                                                        | 0.00326                                                       | 0.0032                                                        | <0.00040                                                      |
| Phosphorous                                           | mg/L                                         | -                   | <0.050                                                        | <0.050                                                        | <0.050                                                         | <0.050                                                         | <0.050                                                         | <0.050                                                        | <0.050                                                        | <0.050                                                        |
| Potassium                                             | mg/L                                         | -                   | 3.1                                                           | 11                                                            | 5.63                                                           | 3,59                                                           | 1.95                                                           | 12.2                                                          | 1.25                                                          | 1.41                                                          |
| Selenium                                              | mg/L                                         | -                   | 0.00261                                                       | <0.00050                                                      | <0.00050                                                       | <0.00050                                                       | 0.00094                                                        | <0.00050                                                      | <0.00050                                                      | 0.00052                                                       |
| Silicon                                               | mg/L                                         | -                   | 12.3                                                          | 16.8                                                          | 9.2                                                            | 9.5                                                            | 6.4                                                            | 9.8                                                           | 6.4                                                           | 6.2                                                           |
| Silver                                                | mg/L                                         | -                   | <0.000050                                                     | <0.000050                                                     | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     |
| Sodium                                                | mg/L                                         | -                   | 33.3                                                          | 192                                                           | 53.8                                                           | 8.48                                                           | 213                                                            | 110                                                           | 149                                                           | 185                                                           |
| Strontium                                             | mg/L                                         | <del>-</del>        | 0.61                                                          | 2.80                                                          | 2.17                                                           | 0.89                                                           | 0.52                                                           | 3.54                                                          | 1.76                                                          | 0.285                                                         |
| Sulfur                                                | mg/L                                         | -                   | 88.4                                                          | 189                                                           | 161                                                            | 22.1                                                           | 56.3                                                           | 187                                                           | 67                                                            | 32.7                                                          |
| Tellurium                                             | mg/L                                         | -                   | <0.00050                                                      | <0.00050                                                      | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      |
| Thallium                                              | mg/L                                         | _                   | <0.000020                                                     | 0.000023<br><0.00010                                          | <0.000020<br><0.00010                                          | <0.000020<br><0.00010                                          | <0.000020<br><0.00010                                          | <0.000020<br><0.00010                                         | <0.000020<br><0.00010                                         | <0.000020<br><0.00010                                         |
| Thorium                                               | mg/L                                         | _                   | <0.00010                                                      |                                                               |                                                                |                                                                |                                                                |                                                               |                                                               |                                                               |
| Tin<br>Titanium                                       | mg/L                                         | _                   | <0.00020<br><0.0050                                           | 0.0104<br><0.0050                                             | <0.00020<br><0.0050                                            | <0.00020<br><0.0050                                            | <0.00020<br><0.0050                                            | <0.00020<br><0.0050                                           | <0.00020<br><0.0050                                           | <0.00020<br><0.0050                                           |
| Titanium                                              | mg/L                                         | _                   |                                                               |                                                               |                                                                |                                                                |                                                                |                                                               |                                                               |                                                               |
|                                                       |                                              | _                   |                                                               |                                                               |                                                                |                                                                |                                                                |                                                               |                                                               |                                                               |
|                                                       |                                              | _                   |                                                               |                                                               |                                                                |                                                                |                                                                |                                                               |                                                               |                                                               |
|                                                       |                                              | _                   |                                                               |                                                               |                                                                |                                                                |                                                                |                                                               |                                                               |                                                               |
|                                                       |                                              |                     |                                                               |                                                               |                                                                |                                                                |                                                                |                                                               |                                                               |                                                               |
| Trangsten<br>Uranium<br>Vanadium<br>Zinc<br>Zirconium | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | -<br>-<br>-<br>-    | <0.0030<br><0.0010<br>0.0193<br><0.0010<br>0.0651<br><0.00010 | <0.0030<br><0.0010<br>0.00119<br><0.0010<br>0.816<br><0.00010 | <0.0030<br><0.0010<br>0.0139<br><0.0010<br><0.0040<br><0.00010 | <0.0030<br><0.0010<br>0.00498<br><0.0010<br>0.0351<br><0.00010 | <0.0030<br><0.0010<br>0.0054<br><0.0010<br><0.0040<br><0.00010 | <0.0030<br><0.0010<br>0.0047<br><0.0010<br>0.0362<br><0.00010 | <0.0030<br><0.0010<br>0.000737<br><0.0010<br>1.79<br><0.00010 | <0.0030<br><0.0010<br>0.00234<br><0.0010<br>0.244<br><0.00010 |

20144760

#### Notes for Table 2.1

Groundwater criteria are from Health Canada's Guidelines for Canadian Drinking Water Quality (GCDWQ),

prepared by the Federal-Provincial-Territorial Committee on Health and the Environment (September 2020).

Health Canada's GCDWQ criteria are maximum acceptable concentrations (MAC), with the expection of those marked as aesthetic objectives (AO).

Note 1. Health Canada's turbidity guideline of <1.0 NTU is applicable to groundwater entering the drinking water distribution system.

Note 2. Health Canada recommends that excess free ammonia entering the distribution system should be limited to below 0.1 mg/L (as N), and preferably below 0.05 mg/L (as N), to help prevent nitrification.

Exceedences of the GCDWQ criteria are shown with the formatting below:

Concentration is greater than GCDWQ MAC or AO (cell is light grey), where only one criteria is available; or greater than the GCDWQ AO where both criteria are available. 806

0.0376 Concentration is greater than GCDWQ MAC (and the AO) (cell is light grey, value is bold and underlined), where both MAC and AO criteria are available.

Printed on: 2022-03-10

Table 4 - Analytical Groundwater Isotope Results Phase 2 Groundwater Study, Keddleston, BC

|                      |             |                           |             | Tap Sa                    | Tap Sampling            |             |             |             |
|----------------------|-------------|---------------------------|-------------|---------------------------|-------------------------|-------------|-------------|-------------|
| Location             | 120         | 000                       | 021         | 412                       | 726                     | 180         | 026         | 840         |
| SCN                  | 12399-01    | 12399-02                  | 12399-03    | 12399-04                  | 12399-05                | 12406-01    | 12406-02    | 12411-01    |
| Laboratory Sample ID | 21K2544-01  | 21K2544-02                | 21K2544-03  | 21K2544-04                | 21K2544-05              | 21L0506-01  | 21L0506-02  | 21L2571-01  |
| Date Sampled         | 18-Nov-21   | 18-Nov-21                 | 18-Nov-21   | 18-Nov-21                 | 18-Nov-21               | 2-Dec-21    | 2-Dec-21    | 16-Dec-21   |
| Water Type           | Groundwater | Groundwater   Groundwater | Groundwater | Groundwater   Groundwater | Groundwater Groundwater | Groundwater | Groundwater | Groundwater |
| Isotopes             |             |                           |             |                           |                         |             |             |             |
| Oxygen-18 (‰)        | -16.32      | -18.77                    | -18.10      | -18.15                    | -19.04                  | -18.59      | -18.67      | -19.55      |
| Deuterium (‰)        | -126.6      | -144.6                    | -139.1      | -137.6                    | -145.7                  | -142.5      | -142.7      | -150.1      |

# Notes:

All results are in comparison to Vienna Standard Mean Ocean Water (VSMOW).  $SCN = sample \ control \ number$ 

















29 June 2022 20144760-004-R-Rev1

**APPENDIX A** 

Well Survey





## **KEDDLESTON WATER WELL QUESTIONNAIRE**Greater Vernon Water

To gain a better understanding of the overall groundwater/aquifer health and usage in the Keddleston area, the Regional District of North Okanagan (RDNO) is in the process of identifying private well water users within the study area aquifers. In order to obtain this information, the RDNO is requesting that you, as a property owner, complete the below questionnaire to the best of your knowledge.

| knowledge. |                                                                                                                                                            |         |                         |                      |                         |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|----------------------|-------------------------|--|--|--|--|
| Name:      |                                                                                                                                                            |         |                         | Phone:               |                         |  |  |  |  |
| Address:   |                                                                                                                                                            |         |                         |                      |                         |  |  |  |  |
| 1.         | . Do you have a water well on your property that is <b>in use</b> ?                                                                                        |         |                         |                      |                         |  |  |  |  |
|            | YES (1 well) More than 1 (please specify) NO (no active well on property)                                                                                  |         |                         |                      |                         |  |  |  |  |
| 2.         | Do you have a v                                                                                                                                            | vater w | ell on your property th | nat is <b>not in</b> | use?                    |  |  |  |  |
|            | YES (1 well) More than 1 (please specify) NO (no inactive well on property)                                                                                |         |                         |                      |                         |  |  |  |  |
|            | If more than 1 well on property, please complete a separate Water Well Questionnaire for each additional well.                                             |         |                         |                      |                         |  |  |  |  |
| 3.         | . Briefly describe where the well is located on your property (provide a sketch of the well location in the space provided at the bottom of questionnaire) |         |                         |                      |                         |  |  |  |  |
|            |                                                                                                                                                            |         |                         |                      |                         |  |  |  |  |
|            |                                                                                                                                                            |         |                         |                      |                         |  |  |  |  |
|            |                                                                                                                                                            |         |                         |                      |                         |  |  |  |  |
| 4.         | Well Depth                                                                                                                                                 | ft      | Well Diameter           | inches               | Estimated Water Depthft |  |  |  |  |
| 5.         | Pump Depth                                                                                                                                                 | ft      | Pump Capacity (US       | gallons per          | minute [USgpm])         |  |  |  |  |
| 6.         | Pumping Rate (a                                                                                                                                            | approxi | mate rate at which yo   | u pump you           | ır well)(USgpm)         |  |  |  |  |
| 7.         | Well Yield (sustainable rate of flow that well can draw continuously over an extended period)(USgpm)                                                       |         |                         |                      |                         |  |  |  |  |

| 8. Is a Well ID plate attached to your well? YES NO                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------|--|--|--|--|
| If <b>YES</b> , indicate Well ID plate number                                                  |  |  |  |  |
| 9. Do you have the original well log from when the well was drilled? YES NO                    |  |  |  |  |
| If <b>YES</b> , would you be willing to provide a copy to the RDNO for this study?             |  |  |  |  |
| 10. What is your well completed in? Bedrock Sand / Gravel                                      |  |  |  |  |
| Other (please state)                                                                           |  |  |  |  |
| 11. Is your well used for domestic (i.e., household) purposes?                                 |  |  |  |  |
| 12. Is your well used for irrigation of cultivated land (hay fields, crops, other) or pasture? |  |  |  |  |
| YES NO                                                                                         |  |  |  |  |
| If <b>YES</b> , what do you irrigate?                                                          |  |  |  |  |
| 13. How long during the year do you irrigate (months)?                                         |  |  |  |  |
| Approximate irrigated area?                                                                    |  |  |  |  |
| 14. What is your approximate irrigation water demand (annual or monthly)?                      |  |  |  |  |
| 15. Describe any water shortage problems with your well (including time of year)               |  |  |  |  |
|                                                                                                |  |  |  |  |
|                                                                                                |  |  |  |  |
|                                                                                                |  |  |  |  |
| 16. Describe any water quality problems with your well                                         |  |  |  |  |
|                                                                                                |  |  |  |  |
|                                                                                                |  |  |  |  |
|                                                                                                |  |  |  |  |
| 17. Describe any other known problems with your well                                           |  |  |  |  |
|                                                                                                |  |  |  |  |
|                                                                                                |  |  |  |  |
|                                                                                                |  |  |  |  |
|                                                                                                |  |  |  |  |

| 18. The RDNO will be selecting water wells within the Keddleston area that are suitable for groundwater monitoring and/or testing.                                                 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Are you willing to allow your well to be used for field monitoring purposes (i.e., water quality testing, water level measurements, pumping test)? YES NO                          |  |  |  |  |  |
| Additional Comments                                                                                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
| 19. Sketch of well location on your property                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                    |  |  |  |  |  |
| Your participation in the questionnaire is appreciated. If you have any questions, please contact <b>Sarah Graham</b> at <b>250-550-3681</b> or <b>sarah.graham@rdno.ca</b> .      |  |  |  |  |  |
| Please return the completed questionnaire to <u>utilities@rdno.ca</u> or mail to/drop off at the RDNO office: 9848 Aberdeen Rd, Coldstream, BC V1B 2K9 by <u>November 2, 2020.</u> |  |  |  |  |  |

**RESET FORM** 

29 June 2022 20144760-004-R-Rev1

**APPENDIX B** 

Well Records



## McHARG DRILLING LTD.

SITE 20, COMP. 23, R.R. 3 ☐ SALMON ARM, B.C. ☐ V1E 4M3
TELEPHONE 832-3264

| Date July 24/93                                                            | Telephone5      | 45-9399                |
|----------------------------------------------------------------------------|-----------------|------------------------|
| Owner's Name Clint Lee                                                     | ·               |                        |
| Address RR#3 S. II C. 19                                                   | 3               |                        |
| Location Rogers Rd                                                         |                 |                        |
| 0-25 bolders                                                               |                 |                        |
| 25-30 Fractured Sedrock                                                    |                 |                        |
| 30-70 bedrock                                                              |                 |                        |
|                                                                            |                 |                        |
|                                                                            |                 |                        |
| Total Depth 78-ft                                                          |                 |                        |
| 1. Casing Size 65 Type Stee!                                               | Set From        | O                      |
| 1. Screen Length                                                           | Slot            |                        |
| Set Alasic liner From                                                      | n 2014          | To 72 At               |
| Air-lift Tested (approx.) GPM*                                             |                 |                        |
| Recommended Pumping Rate                                                   | to 9 GAM        | <u> </u>               |
| Static Water Level 18 11. Recommend                                        | ded Pump set at | 50A #.                 |
| 2/00/14 30/                                                                | 4               | 70000                  |
| Drilling and Casing 26 /ft x 30 f<br>Bad rock drilling & track 2001/ft x 4 | T               | \$ 20000               |
| Drive Shoe / at                                                            |                 |                        |
| Keacker and Riser lines 50ft ×                                             |                 | 2=000                  |
|                                                                            |                 |                        |
| Other / Well cap<br>Reaning hale to 8                                      |                 | 32000                  |
| nobe of demoke.                                                            |                 | \$ 35000               |
| mose a cemose.                                                             |                 | \$ 330                 |
|                                                                            |                 | \$                     |
|                                                                            |                 | \$                     |
| Cost of Well Acid in full.                                                 |                 | = 258500               |
|                                                                            | G.S.T.          | \$ 2 <b>5</b> 85°°° \$ |
| G.S.T. R103594495                                                          | TOTAL           | \$ 2872.75             |
| McHARG DRHLING LTD.                                                        | IOIAL           | 2765.95                |
| Clubby Pe                                                                  | mike, Do        |                        |

## WANGLER DRILLING LTD.

7938 Cambie Road • Salmon Arm B.C. V1E 2Y6 • Ph: 832-3264 • Toll Free: 1-800-624-7417 • Fax: 832-0563

| Owner's Name Clin            | t Lee                 | Fax                   |            |
|------------------------------|-----------------------|-----------------------|------------|
| Address RR = 3               | 3 SII C193            |                       |            |
|                              | ers Rd                | Postal Code           |            |
| Formation & Remarks          |                       | -                     |            |
| 0-25 bouldes                 |                       | 180-185 10 GA         | m          |
| 25-30 fractured              |                       | 185 - 200 no chan     | ge in flow |
| 30-70 broak -                | 12 GAM                |                       |            |
| 70-180 bedrack               | no change into        |                       |            |
| WELL COMPLETION INFO         |                       |                       |            |
| Total Depth 220              | ft. *Air l            |                       | G.P.M.     |
| Recommended Run 5            | 7 G.P.M. Series Pun   | np                    |            |
| Static Level 2:18 ft.        | , a                   | imp Setting @ 200     | it.        |
| Casing Size 652 Type         | e Stal                | Set From O to         | 30ft.      |
| Size 4 Type                  | PUC WELL CSG          | From <u>20</u> to     | ft.        |
| COSTS   + 1                  |                       |                       |            |
| Equipment Travel & Rigging   | A hrs.                | 200 per hr.           | 400        |
| Drilling overburden          | 150 ft.               | 20 per ft.            | _3000"     |
| Drilling bedrock             | ft.                   | per ft.               |            |
| Develop well ( Pull liver &  |                       | 200 per hr.           | 300°       |
| Pressure frac   Run nas lin  | hrs.                  | per hr.               |            |
| Materials installed in well  |                       |                       |            |
| Steel casing                 | ff.                   | perft.                |            |
| PVC casing                   | _200" ft.             | per ft.               | 12001/0    |
| Screens                      | X                     | 03.                   |            |
| K packer with Riser          | X                     | өа.                   |            |
| Additional remarks and/or of | costs Paid in Aus     | There yell Drive shoe |            |
| Pull line q                  | - · · · ·             | Well cap              |            |
|                              | 70-220 ft             | Screen bottom         |            |
| Run lines                    |                       |                       |            |
| no charge for                | developing hale c     | lean before           |            |
| no charge for main           | TX 0 = 140            | Well Cost             | 49000      |
| TERMS: Payment due upon      |                       | GST                   | 34200      |
| NOTE: Interest charge        |                       | TOTAL                 | (243)      |
| IN TE THE BUT CHANGE         | , on average accounts | IOIAL                 |            |
|                              |                       |                       |            |
| Customer                     | = " := V              | Vangler               |            |

### MCHARG DRILLING LTD.

SITE 20, COMP. 23, R.R. 3 
SALMON ARM, B.C. 
V1E 4M3
TELEPHONE 832-3264

| Date July 17/91                                                                                                                                                                                                                                                    | Telephone 542- 4301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Owner's Name                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address Box 1164 Usen                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Location Makingan Rd                                                                                                                                                                                                                                               | Hole No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0-3 to gazels & bolden                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 - 100ft had black balrak                                                                                                                                                                                                                                         | The state of the s |
| 100-105 Fractions                                                                                                                                                                                                                                                  | 290:300 plack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 140-160 /year                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 160-220 White                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Depth 300ft                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Casing Size 6 58. Type Stal                                                                                                                                                                                                                                     | Set From To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2. Casing Size Type                                                                                                                                                                                                                                                | Set From To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. ScreenLengt                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                    | Slat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SetFrom                                                                                                                                                                                                                                                            | To Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Set From | etrack. I gam acts of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Recommended Pumping Rate                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Static Water Level5_3_ftRecom                                                                                                                                                                                                                                      | mended Pump set at 270 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drilling & Ft x 24"4+                                                                                                                                                                                                                                              | \$ /9200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| . Casing / 292+ x 182/4+                                                                                                                                                                                                                                           | \$ 5936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Screen(s)                                                                                                                                                                                                                                                          | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Drive Shoe N/A                                                                                                                                                                                                                                                     | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| K-Packer W/A                                                                                                                                                                                                                                                       | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Developing 12 kg Alle                                                                                                                                                                                                                                              | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other R103594495                                                                                                                                                                                                                                                   | \$ 5.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CST                                                                                                                                                                                                                                                                | \$ 381 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| types before liently Spence                                                                                                                                                                                                                                        | Perfort \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Cost of Well                                                                                                                                                                                                                                                 | \$ 5829 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Amount Paid                                                                                                                                                                                                                                                        | \$ 582936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Balance Due apon receipt.                                                                                                                                                                                                                                          | \$ 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Owner's Signature                                                                                                                                                                                                                                                  | McHARG DRILLING LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                    | Per Darrey Waster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Terms: Cash, 2% per mon                                                                                                                                                                                                                                            | In of 44% per annum charged on overdue accounts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

\*ESTIMATE ONLY - For accuracy, a pump test is required.



Certificate No. 100-15011

Head Office: #6, 740 WADDINGTON DRIVE VERNON, B.C. V1T 9E9

TELEPHONE: (604) 542-5012 TELEPHONE: (604) 861-6633

FAX: (604) 542-5510

Neil Campbell Lot #1, Mclennan Rd., Vernon, B.C. Ph: 492-7542

January 6,1994

Dear Sir,

On January 5, 1994, Lingo Waterworks Ltd. performed a brief pump test on your 6" X 301' water well located at the above address at your request, and the results are as follows:

Owned & Operated by

Lingo Waterworks Ltd.

The well was pumped at a rate of 4 us gpm for a period of 2 hours because the water was very dirty, filled with what we refer to as 'rock flour'. This is usually a result of the drilling procedure and tends to diminish as the well is used. It can however plug a pump and too much at once can block the fissures in the rock that the water flows into the well through, so slow pumping is generally the procedure we follow until this condition starts to clear up. During this period of time the water level in the well dropped from it's original static of 24.1 ft to 131 ft.

As there is about 1.4 gallons/ft of 6" casing there is around 150 gallons stored in that portion of the bore hole. During the two hours of pumping we pumped a total of about 480 gallons. The difference between the two figure is about 330 gallons. This translates to a recharge rate of almost 2 gallons/minute. This figure is an indicator only.

We then proceeded to empty the bore hole as quickly as possible and then let the well recover. The amount of recovery time allowed was 10 minutes exactly. The well was then re-emptied at a rate of 7 us gpm, and it took another 13 minutes to empty the bore hole. This indicates that the well recharged at a rate of about 3 gpm. (This rate is expected to be slightly greater than the first measured rate because we had removed the weight of the column of water in the well by some two hundred feet.)

It was during this last pump cycle that a water sample was taken and the results and discussion concerning them are attached hereto.

At the present time, this well appears to produce not more than 3 gallons per minute.

Thank you for using Lingo Waterworks Ltd., and if we may be of further service to you when you are ready to install your permanent water system, please don't hesitate to call.

Yours truly,

LINGO WATERWORKS LTD.

per Don Byrne

## FRODUCTS PRODUCTS #6-740 Waddington Dr., Vernon, B.C., V1T-9E9

Mr. Neil Campbell Lot #1, McLennan Rd. Vernon, B.C.

Jan. 6, 1994

Dear Neil;

On January 5,1994, Lingo Waterworks Ltd. conducted a short pump test on your well on McLennan Rd. as per your directions. At the completion of the pumping segment of that test a water sample was taken for quality analysis. The results of that sampling are as follows:

TOTAL DISSOLVED SOLIDS - 610 parts/million

HARDNESS - 16 grains/gallon (273.6 parts/million)

IRON - <.01 parts/million

PH - 8.2

NITRATE - 0 parts/million NITRITE - O parts/million H25 - none detected

TURBIDITY - cloudy COLIFORM/FECAL COUNT - NOT TESTED

#### CONCLUSION

This water appears to be acceptable in quality for domestic application however, the hardness level will present some difficulty and the trace of iron will present staining over an extended period of time. As mentioned above, Coliform and Fecal matter testing has not been performed and no judgement has been made in that regard.

#### SUGGESTION

We would suggest that a 32,000 grain softener equipped with a turbulator be installed to accomplish complete removal of the hardness and the iron.

We would also suggest that a 10 inch prefilter be installed to remove the cloudiness from the water prior to softening. The cloudiness found will probably decrease as the well is used, however, a filter of this nature will provide continuous protection should the condition persist.

We thank you for the opportunity of assisting you in your well evaluation and we would be pleased to offer competitive pricing on the required water treatment systems when the need arises.

Yours truly

604-545-2760 Terry Reed

KAL WATER PRODUCTS/LINGO WATERWORKS LTD.



www.dangaredrilling.ca B.C. Toll Free 1-888-549-3130 (250) 546-3480 1199 Mountain View Road Armstrong, B.C. V0E 1B8

Harmony Homes Ltd. 4875 248th St. Aldergrove, BC V4W 1C8

# 1010-11

Date: July 6, 2011

Phone: 604-377-6537

GST #133108282

Drilling Site: Clearview Road, Vernon

| Description                           | Unit Price | Ó.       |            |
|---------------------------------------|------------|----------|------------|
| Set-up fee                            | Stat Tibe  | Quantity | TOTAL      |
| Rig time -cleaning out existing well  | 250.00     | 1        | 250.00     |
| PVC well liner installed              | 285.00     | 2        | 570.00     |
|                                       | 6.00       | 480      | 2,880.00   |
|                                       |            | Subtotal | 3,700.00   |
|                                       |            | GST 12%  | 444.00     |
| Payment is due on receipt of invoice. |            | TOTAL    | \$4,144.00 |

Interest at 24% per annum after 10 days.

ATTENTION LASSA

THANK YOU FOR YOUR BUSINESS!



| d. Albana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | At least, Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ners Nome & Address Herman Aikerna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A ADMINISTRATION OF THE PARTY O |
| Remainder Part of 5's of SWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | See 30 Tup5_ODYO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| criptive Location . Paul # 722 - 00202.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YPE Wew Well : Reconditioned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. CASING: QYSteel :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F WORK Despensed Department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Materials (L) Plastic (L) Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WORK         Cobbe tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diameter A Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WATER Momestic Limiting Direction WELL USE 11 Comm. & Ind. Clinther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | from +2 to 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CRILLING ADDITIVES None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inchness 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PEASUREMENTS from 1 Defround level 11 top of cooling casing height above ground level Q 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pitters unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| WIN TO S. WELL LOG DESCRIPTION SYL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Perferctions: ALO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 - 4 - 12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O II Clay & rocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Snoe (a): Street 18 to 480 ft Diameter 6 ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11 450. Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Open hole, from 18 to 780 ft Olomate 1 1938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IO. SCREEN: C Nominal (Talescope) / LI Pipe Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type (El Continuous Stat : El Perforuted - El Louvre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Muterial : (_Stainless Steel   Li Plastic Frother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Set from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| pre v vm 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RISEH, SCREEN & BLANKS units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Length ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 「Attantive」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Siot Size from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to the state of th |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fittings, top., bottom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gravel Pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. DEVELOPED BY: "LIsurging : Eldetting ; WAle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| We recommend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ; (18ailing : l'Pumping l'Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| immediates installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12. TEST : Trump : [] Boil : WAIT Date LO. 1.1 9.51.2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| of a H' OVC water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rate 12 USgpm Temp_ °C SWL before testf1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| pipe liner in this well-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water Loveltt after test ofhrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the same of th |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mins WL mins WL mins W. mins W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| marries and a second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BECOMMENDED PUMP INT THE RECOMMENDED PUMP INT THROUGH PER THROUGH PARTY  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Submersibles. 460 11 4-6 Usgam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - IA WATER TYPE: (Effresh : Elsolty : Picteor .: [.] cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | colour no smell no gos : Lives temo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15. WATER ANALYSIS: Hardness L.L. J. mg.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7. CONSULTANT Plone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · : Iron     mg/L · · Chloride         mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field Date L. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Date L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AM 14 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| £,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WELL COMPLETION DATA  Polity   1/12/0/ft   Well Yield   1/12/0/12/0/gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| All De Well De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | epth 1420ft Well Yield 1 152 US gpm Wuter Level 1330ft Anderson 1 US gpm Procesure 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stolic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wuter Level 1 x 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ven H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lead Completion Lap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dispersion (mpr) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subhake Kluck white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17. ORIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LER MGG Jaddenty L James                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dive 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Signature Kann Chladden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PACTOR TO FINANCIAL DELLISONETT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Box 1565, Vernon BC VIT 8CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pox 1062, Vernon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 950-544-3130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BENNING THOS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

P.O. BOX 3276 — KAMLOOPS, BRITISH COLUMBIA — V2C 6B8 BUS. PHONE (604) 573-3000 - RES. PHONE (604) 545-6348 - TACKSON WILSON Total Depth 1. Casing Size Steel Type 65 2. Casing Size \_\_\_\_\_ Type \_\_\_\_\_ Set From \_\_\_\_ To \_\_\_ Length \_ 1. Screen . Slot \_ Length \_ 2. Screen \_\_ \_\_ To \_\_ From -Pump Tested 1. 6 \*GPM Draw Down Recommended Pumping Rate. Recommended Pump set at \_\_ Static Water Level 55 Drilling \_ Casing \_ Screen(s) Drive Shoe K-Packer and Riser \_\_ Developing \_\_\_ Total Cost of Well Owner's Signature Terms: Cash. 2% per month or 24% per annum charged on overdue accounts. \*ESTIMATE ONLY — For accuracy, a pump test is required. G.S.T. No. R133534693

#2083 P.001 /001

BUDSWATERWELLS

T43.2011 11:36 2506798423

# SIERRA

WELL & PUMP INC.

4519 McLeery Road Armstrong, B.C. VOE 1B3

Tel: 250-546-9992

QUOTATION

ROB MOORE WATER SYSTEM SOLUTIONS

| NELL & PUMP INC. Tel: 250-515           | TUNE 20/2011             |
|-----------------------------------------|--------------------------|
|                                         | Date: 500 20 12011       |
| = = = ================================= | Phone No: (403) 251-0577 |
| Address: 7955 Wison Jackson RD.         | Fax No:                  |
| Address:                                | Job No:                  |
| VEENON B.C.                             | Total Price              |

| 955 WIBO                                                                                          | Job No: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| VEENON B.C                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Price |
|                                                                                                   | Unit Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Description                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| ity                                                                                               | 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| I ROB MOORE TICK                                                                                  | LETED G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| I ROB MOORE TICK  QUALIFIED WELL PUMP.                                                            | INSTAILERS TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| AUALIFIED WELL PUMP.  HAVE PERFORMED FLOW  HAVE PERFORMED APPROX                                  | RATE PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| HAVE PERFORMED FLOW  HAVE PERFORMED FLOW  ON 2 WELLS APPROX  ON 3 WELLS APPROX  ON 3 WELLS APPROX | 150 Roma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                   | or 9 HIS and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| V- 12/15/1                                                                                        | 11-11-11-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|                                                                                                   | ION RATE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| incomeing water                                                                                   | 2 WAS NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| The other word                                                                                    | 10 Complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Draw Down of WELL                                                                                 | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| BOTH WELLS ARE Drilled 6                                                                          | "X 400-500 AMIOX SCI.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| BOTH WELLS ARE Drilled 6  * WELL# 2 HAS BEEN                                                      | PUMPED FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| * WELL# 2 HAS BEEN<br>HIS AT WhiCH TIN                                                            | - Fland PATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Hrs AT Which Time TO HAVE A CONSTANT                                                              | 7 10 WELL PUMPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 70 HAVE A CONSTANT<br>2.8 US GRM AND I                                                            | TO WELL #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 1/ a 10 interest                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| AT The Time.  (* 3,5 US GPM Combin                                                                | ed WATES Flow RATE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| 1 x 3,5 US GPM COMOIN                                                                             | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| C NOTH POP                                                                                        | AND THE PROPERTY OF THE PROPER |             |
| WILSON JACKSON                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| WILDON                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                   | WELL#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| WEU#1                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UB TOTAL    |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LABOUR      |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G.S.T.      |
|                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TAL PRICE   |
| Customer: HOUSE                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

#### **Well Summary**

Well Tag Number: 36463

Well Identification Plate Number: 53119
Owner Name: PARADISE RIDGE WATER UTILITY
SOCIETY

Intended Water Use: Water Supply System
Artesian Condition: No

Well Status: Alteration
Well Class: Water Supply
Well Subclass: Not Applicable

Aquifer Number: 350

Observation Well Number: Observation Well Status:

Environmental Monitoring System (EMS) ID:

Alternative specs submitted: No

#### Licensing Information

Licensed Status: Licensed Licence Number: 503100

#### **Location Information**

Street Address: SW FLANK OF SILVER STAR MTN

Town/City: VERNON

#### Legal Description:

| 1         |
|-----------|
| 31551     |
|           |
|           |
| 29        |
| 5         |
|           |
| 41        |
| 003786731 |
|           |

#### Description of Well Location:



Geographic Coordinates - North American Datum of 1983 (NAD 83)

Latitude: 50.32765 UTM Easting: 344756 Zone: 11

Longitude: -119.18114 UTM Northing: 5577336

Coordinate Acquisition Codes (10 m accuracy) ICF cadastre and good

location sketch

#### Well Activity

| Activity      | Work Start Date | Work End Date | Drilling Company    | Date Entered                | 4 |
|---------------|-----------------|---------------|---------------------|-----------------------------|---|
| Legacy record | 1974-08-16      | 1974-08-16    | Pacific Water Wells | August 13th 2003 at 3:20 AM |   |

#### Well Work Dates

| Start Date of | End Date of  | Start Date of | End Date of | Start Date of | End Date of  |
|---------------|--------------|---------------|-------------|---------------|--------------|
| Construction  | Construction | Alteration    | Alteration  | Decommission  | Decommission |
| 1974-08-16    | 1974-08-16   | 1985-11-01    | 1985-11-01  |               |              |

#### Well Completion Data

Total Depth Drilled:

Finished Well Depth: 148 ft bgl

Final Casing Stick Up: Depth to Bedrock: Ground elevation:

Estimated Well Yield: 5 USgpm

Well Cap:

Well Disinfected Status: Not Disinfected

Drilling Method: Other

Method of determining elevation: Unknown

Static Water Level (BTOC): 138 feet btoc

Artesian Howa

Artesian Pressure (head): Artesian Pressure (PSI): Orientation of Well: VERTICAL

#### Lithology

| From (ft bgl) | To (ft bg() | Raw Data       | Description | Moisture | Colour | Hardness | Observations | Water Bearing Flow Estimate (USGPM) |
|---------------|-------------|----------------|-------------|----------|--------|----------|--------------|-------------------------------------|
| 0             | 73          | TILL, BOULDERS |             |          |        |          |              |                                     |
| 73            | 148         | BEDROCK        |             |          |        |          |              |                                     |
| 148           | 195         | BEDROCK        |             |          |        |          |              |                                     |

#### Casing Details

| From (ft bgl) | To (ft bgl) | Casing Type | Casing Material  | Diameter (in) | Wall Thickness (in) | Drive Shoe |
|---------------|-------------|-------------|------------------|---------------|---------------------|------------|
|               |             |             | There are no rec | ords to show  |                     |            |

#### Surface Seal and Backfill Details

Surface Seal Materials

Surface Seal Installation Method:

Surface Seal Thickness: Surface Seal Depth:

Backfill Material Above Surface Seal:

Backfill Depth:

#### Liner Details

Liner Material:

Liner Diameter: Liner from:

Liner Thickness: Liner to:

Liner perforations

From (ft bgl) To (ft bgl)

There are no records to show

Estimation Duration:

#### Screen Details

Intake Method:

Installed Screens

Type: Material: Opening:

Bottom:

From (ft bgl)

To (ft bgl)

Diameter (in)

Assembly Type

Slot Size

There are no records to show

#### Well Development

Developed by:

Development Total Duration:

#### Well Yield

Estimation Method:

Static Water Level Before Test:

Hydrofracturing Performed: No

Estimation Rate:

Diawdown:

Increase in Yield Due to Hydrofracturing:

#### Well Decommission Information

Reason for Decommission: Sealant Material: Decommission Details:

Method of Decommission:

Backfill Material:

#### Comments

FERGO WELL PREVIOUSLY ASPEN UTILITIES, Original Owner = RAY FERGUSON. Well x-ref'd and associated w/ GW licence app METHOD OF DRILLING = DRILLED. WELL RECONSTRUCTED IN 1983 & AGAIN IN NOV/85. 1983 A 4.5" ID STEEL LINER SLOTTED @ BOTTOM 20' WAS INSTALLED TO 146.5'. 1985 WELL DEEPENED TO 195' THEN COMPLETED WITH 4" ID SLOTTED LINER TO 177'.

Alternative Specs Submitted: Yes

#### **Documents**

• WTN 36463 Pumping Test info.xlsx

#### Disclaimer

The information provided should not be used as a basis for making financial or any other commitments. The Government of British Columbia accepts no liability for the accuracy, availability, suitability, reliability, usability, completeness or timeliness of the data or graphical depictions rendered from the data.

| WATER WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WELL LOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CON         | STRUCTION RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OWNER Frening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ne Co       | eight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GROUND WATER DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Address 1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Patter      | as Rd. Vermon BG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Location Green &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I af        | Silver Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Date Completed 10 /76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PACIFIC WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ER WELLS (1969) LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Method Galle Told                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RASER HIGHWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | The Helper C Jhou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EY, B.C. V3A 4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | K. NORTH Folio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne 534-8581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Phoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 334-8381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Signed B    | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF FORMATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | CASING RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | Diains. Wt#/ft. Fromto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | grad gubbli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Diains. Wt#/ft. Fromto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Diains. Wt#/ft. Fromto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25 to 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The state of the s |             | Shoe Welded Cemented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 67 to 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wohn Beary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7           | SCREEN RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 91 to 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - guar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Make Johnson Material 5 Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Dedroch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           | Slot opening 40 Length 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Top 87 ft. Bottom 71 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HATCHES AND AREA OF THE STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Fittings Top Poly Fittings Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 | Gravel PackNatural_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Development Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ROCK WELL DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Open Bore Holeins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Fromft. toft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PRODUCTION DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Static Level 1 2 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OCT 17 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Measured from 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OCT I'I ISI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Pumping Levelft. atGPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | ft. at GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HIS SECTION AND THE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Bail Test &O _ft. at GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/4 1/2     | ft. atGPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Recommended Pump Setting & ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 但 <u></u> 使使者更新的。这些问题。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Recommended Max. Pump Output 10 GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Control of the contro |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FREE ENDINGS STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Duration of TestHrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The State of the S |             | PUMP DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| THE RESERVE THE PARTY OF THE PA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100         | MakeType                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERAL REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100         | Model Serial No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENAL REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           | Size HP Drop Pipeins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | GPM Head ft RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | MotorVoltsPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Value of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTROL (Alternation of the Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Well Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Other Systems in the St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A STANDARD OF THE STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Water Analysis — HardnessPPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PHPPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| - 1  |
|------|
|      |
|      |
| ~    |
| CV   |
| -    |
|      |
| -    |
| -    |
|      |
| -    |
|      |
|      |
|      |
| -    |
|      |
| 1 0  |
| 1/1  |
| V. A |
| -    |
| ~    |
| (4)4 |
|      |
|      |
| ( )  |
| -    |
| -    |
|      |
| \ \  |
| - 4  |
| -    |
| -    |
| 10   |
| 60   |
| 100  |
| ~    |
| . 1  |
| V    |
|      |
|      |

WTN:33657

| WATER WELL DEPT OF ENVIRONMENT. WATER RESOURCES SERVICE. WATER                         | WATER WELL RECORD OURCES SERVICE: WATER INVESTIGATIONS BRANCH                               | VICTORIA                       | BRITISH COLUMBIA                                                                                                                                                                                     | Z WELL NO.                      |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| LEGAL DESCRIPTION: LOT 8EC                                                             | n                                                                                           | 050,000                        | PLAN 19698                                                                                                                                                                                           | Z                               |
| DESCRIPTIVE LOCATION CARY                                                              | RD OF SILVER STAR                                                                           | LICENCE NO                     | NO. — DATE —                                                                                                                                                                                         | z /0 x 7 x 35 NO. 15            |
| S NAME PACIFICAL S NAME PROFITON (108)                                                 | DRESS / 30                                                                                  | PAMENS AD V                    | COMPLETED 19/1                                                                                                                                                                                       | TOPO. SH                        |
| 1000                                                                                   | CASING DIAM.                                                                                | LENGIH                         | PRODUCTION                                                                                                                                                                                           | CTION TEST SUMMARY              |
| SCREEN LOCATION 37 41/ SCREEN ESSANITARY SEAL YES NO SCREEN ESPERORATED CASING LENGTH. | SIZE 40 O/OT LENGTH 4/ SIZE 10 O/OT LENGTH 4/ SIZE PERFORATIONS FROM DIAM. SIZE GRAVEL, ETC | TYPE JOHNSON SS. TYPE          | TEST BY DRILL ER BAIL TEST DURATION OF BAIL TEST BY DRILL EST BOURATION OF RATE CONTRACTION OF TEST.  WATER LEVEL AT COMPLETION OF TEST.  AVAILABLE DRAWDOWN SPECTOR OF TEST.  TRANSMISSIVITY STORMS | DURATION OF TEST/Dr             |
| FROM                                                                                   | ELEVATION ARTESIAN WATER USE                                                                | PRESSURE                       | RECOMMENDED PUMPING RATE                                                                                                                                                                             | G RATE 10 6PM (MAX) SETTING 50' |
| CHEMISTRY                                                                              |                                                                                             |                                | FROM TO                                                                                                                                                                                              | LITHOLOGY                       |
| TEST BY                                                                                |                                                                                             | DATE                           | . 0                                                                                                                                                                                                  |                                 |
|                                                                                        |                                                                                             | SILICA (SIO <sub>2</sub> )mg/! | 251 891 7/14                                                                                                                                                                                         |                                 |
| CONDUCTANCE TOTAL IRON (F6)_                                                           | ALKALINITY (CO CO*) MG/1                                                                    | (CaCO <sub>3</sub> )mg/l       | 89, 411 10.18                                                                                                                                                                                        | CARAVEL                         |
|                                                                                        |                                                                                             |                                | 91' 92' BEL                                                                                                                                                                                          | BEDROCK                         |
| ANIONS mg/1                                                                            | epm                                                                                         | mg/l epm                       |                                                                                                                                                                                                      |                                 |
| CARBONATE (CO <sub>S</sub> )                                                           | CALCIUM (Ca)                                                                                |                                |                                                                                                                                                                                                      |                                 |
| SULPHATE (SO <sub>3</sub> )                                                            | SODIUM (Na)                                                                                 |                                |                                                                                                                                                                                                      |                                 |
| CHLORIDE (CI)                                                                          | POTASSIUM (K)                                                                               | 0                              |                                                                                                                                                                                                      |                                 |
| + TKN. (NITROGEN)                                                                      |                                                                                             |                                | 1                                                                                                                                                                                                    |                                 |
| PHOSPHORUS (P)  * TKN = TOTAL KJELDAHL NITROGEN                                        | N CHEMISTRY SITE NO.                                                                        |                                |                                                                                                                                                                                                      |                                 |
| NO2 " NITRITE NO3 = NITRATE                                                            |                                                                                             |                                |                                                                                                                                                                                                      |                                 |
| RY FIELD TESTS                                                                         |                                                                                             |                                |                                                                                                                                                                                                      |                                 |
| TEST BY DA                                                                             | DATE                                                                                        | USED                           |                                                                                                                                                                                                      |                                 |
| CONTENTS OF FOLDER  PRILL LOG  ISIEVE ANALYSIS                                         | ☐ PUMP TEST DATA☐ GEOPHYSICAL LOGS                                                          | ☐ CHEMICAL ANALYSIS            |                                                                                                                                                                                                      | A.                              |
| ОТНЕЯ                                                                                  |                                                                                             |                                |                                                                                                                                                                                                      |                                 |
| SOURCES OF INFORMATION DRILLER                                                         | R                                                                                           |                                |                                                                                                                                                                                                      |                                 |





|         |                     | NORTH       |      |
|---------|---------------------|-------------|------|
|         | WEST                | SEE /NSIDE  | EAST |
|         |                     | SOUTH       |      |
|         | CARD BYADDITIONAL [ | SM DATE JUI | V 78 |
|         |                     |             |      |
| REMARKS |                     |             |      |



| MTN: 43925        | VICTORIA, BRITISH COLUMBIA  YOUS PLAN                                                     | DATE COMPLETED DEC. 29 X 7 Y 34 NO. 1  DATE COMPLETED DEC. 29  DEC | A TEST SUMMARY ATION OF TEST DRAWDOWN | WATER LEVEL AT COMPLETION OF TEST  AVAILABLE DRAWDOWN SPECIFIC CAPACITY  PERMEABILITY  TRANSMISSIVITY  RECOMMENDED PUMPING RATE  RECOMMENDED PUMP SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A TO LITHO        | LIMESTONE  OF WATER  OF WATER  OF WATER  OF WASTONE  LIMESTONE                                                     | MENTED WELL CAP.  LIBUID LEVEL CONTROL  MSTALLED IN WELL | MER BO ANGO SDAZ JUD 629                                                   | 20 Cherry 4 2                                                                                |                                   |                                                            |
|-------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|
|                   | ATER WELL RECORD  S SERVICE, WATER INVESTIGATIONS BRANCH  TP. 5 R. D.L. LAND DISTRICT 050 | ADDRESS SALUMBY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASING DIAM.                          | DIAM. SIZE GRAVEL, ETC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DATE              | mg/l TEMPERATURE                                                                                                   | CATIONS mg/! ep                                          | SODIUM (Na.) POTASSIUM (K) IRON (DISSOLVED)                                | CHEMISTRY SITE NO.                                                                           | EQUIPMENT USED                    | ☐ PUMP TEST DATA ☐ CHEMICAL ANALYSIS                       |
| 11. 834.034,3,4,3 | DEPT. OF ENVIRONMENT, WATER RESOURCE                                                      | OWNER'S NAME F. M. MEADE  OWNER'S NAME M. SCHIBLI  AD  DRILLER'S NAME M. SCHIBLI  AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ABLE TOOL SCREEN  O SCREEN          | GRAVEL PACK CLENGTH  GRAVEL PACK CLENGTH  DISTANCE TO WATER 35' CLESTIMATED W FROM 6.4. CLESTIMATED W | CHEMISTRY TEST BY | TOTAL DISSOLVED SOLIDSmg/1 TEMPERATUREAUMbos/cmAT 25°C TOTAL IRON (Fe)TOTAL ALKALINITY (C4C03)mg/1 PHEN.ALKACOLOUR | CARBONATE (CO <sub>3</sub> )                             | SULPHATE (SO <sub>4</sub> ) CHLORIDE (CI) NO2 + NO <sub>3</sub> (NITROGEN) | + TKN. (NITROGEN) PHOSPHORUS (P) * TKN = TOTAL KJELDAHL NITROGEN NO2 = NITRITE NO3 = NITRATE | CHEMISTRY FIELD TESTS TEST BYDATE | CONTENTS OF FOLDER  CONTENTS OF FOLDER  CONTENTS OF FOLDER |

|                                                             |      | NORTH |      |  |  |  |  |
|-------------------------------------------------------------|------|-------|------|--|--|--|--|
|                                                             | WEST |       | EAST |  |  |  |  |
| CARD BY LA. W. DATE Jeb. 20, 1980. ADDITIONAL DATA ADDED BY |      |       |      |  |  |  |  |
| REMARKS                                                     |      |       |      |  |  |  |  |

Province of British Columbia Ministry of Environment Water Management Branch

| Legal Description & Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LL RECORD Date OIL /////                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Descriptive Location prochester Rd- Nevni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~ P.C                                                                                     |
| Owners Name & Address D. B. D. Holding I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ne. Week Ballovan Vernon R.C.                                                             |
| NTS MAP ELEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N Date 19 Renainder Lot 2 1/2558                                                          |
| I. TYPE 1 1 New Well 2 Reconditioned OF WORK 3 Deepened 4 Abandoned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9. CASING: 1 Steel 2. Galvanized 3 Wood  Materials 4 Plastic 5 Concrete                   |
| 2. WORK 1 Coble tool 2 Bored 3 Jetted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 Other units                                                                             |
| METHOD 5 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diameter 6'1 Ins                                                                          |
| 3. WATER 1 D-Domestic 2 Municipal 3 Irrigation WFLI 4 Commercial & Industrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from ft                                                                                   |
| WELL 4 Commercial & Industrial USE 5 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to tf Thickness ins                                                                       |
| 4. DRILLING ADDITIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight   lb/ft                                                                            |
| 5. MEASUREMENTS from 1 19 ground level 2 □ top of casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pitless unitft 1 above 2 below ground level  1 Welded 2 Cemented 3 Threaded 4 New 5 Used  |
| FROM TO 6. WELL LOG DESCRIPTION SWL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Perforations:                                                                             |
| 0 6 Rrown Till + Rock Cravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shoe (s):                                                                                 |
| 6 14 Dank. Phue Rock. Very Cracked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Open hole, from to ft Diameter ins                                                        |
| 14 40 DACK Blue With Hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grout:                                                                                    |
| 40 90 Green Rock with whitelager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IO. SCREEN: 1 □ Nominal 2 □ Pipe Size  Type 1 □ Continuous Slot 2 □ Perforated 3 □ Louvre |
| 90 130 Gracked Brown Rock-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 Other                                                                                   |
| with green Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Material 1 ☐ Stainless Steel 2 ☐ Plastic 3 ☐ Other                                        |
| 130 160 DARK. Blue Rock. with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |
| 160 190 Breen + Blue Kock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCREEN & BLANKS units Length ft                                                           |
| 190 210 BAD Ly Cracked WHITET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Diam. I D ins                                                                             |
| Brown Rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | from ft                                                                                   |
| 10 H 0 111 0 1705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to ft                                                                                     |
| 10 H. 96" CASSing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fittings, topbottom                                                                       |
| 3 g.p.m AT 100 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | II. DEVELOPED BY: 1 Surging 2 Jetting 3 SAir                                              |
| 75°g.pm. 180 87.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 Bailing 5 Pumping 6 Other                                                               |
| 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I2. TEST 1 Pump 2 Bail Date                                                               |
| Pumping 78 g.p.m. Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate 75 USgpm Temp C SWL before test ft                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME in mins & DRAWDOWN in ft TIME in mins & RECOVERY in ft                               |
| Cherned + Developed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mins WL mins WL mins WL mlns WL                                                           |
| Elmine in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |
| Flowing 10g.p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECOMMENDED PUMP TYPE RECOMMENDED PUMP SETTING RECOMMENDED PUMPING RATE                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14. WATER TYPE: 1 ofresh 2 osalty 3 clear 4 ocloudy                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | colour; gas 1 yes 2 no                                                                    |
| 7. CONSULTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15. WATER ANALYSIS: 1 ☐ Hardnessmg/ℓ                                                      |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 ☐ Ironmg/ℓ 3 ☐ Chloridemg/ℓ 4 ☐ pH ☐ Field Date ☐                                       |
| 8. WELL LOCATION SKETCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I D No B Lab Date 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                   |
| THE RESERVE THE THE PROPERTY WAS A RESERVE TO BE AND THE PARTY AND THE P | WELL COMPLETION DATA                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | epth 2/0 ft Water Flowing / O USgpm                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Level Flooringft Pressure Head ft                                                   |
| Back f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |
| Well H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ead Completion                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
| 17 DRIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LER SURNAME FIRST NAME                                                                    |
| PLEASE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Signature wif thought                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RACTOR, Address                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lew. Dr. Thing LTD                                                                        |
| /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | os: 17 Low Vernon B.C.                                                                    |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05-11 eque vernon 13.                                                                     |



| 821.034.2.4.2                                                                        | WTN 49632                                   |                                                         |                                       | 61#                            |
|--------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------|--------------------------------|
|                                                                                      | WATER WELL RECORD                           | ORD                                                     |                                       | Z WELL NO.                     |
| DEPT. OF ENVIRONMENT, WATER RESOURCES SERVICE, WATER INVESTIGATIONS                  | ES SERVICE, WATER INVESTIGATION             | IS BRANCH VICTORIA, BRITISH                             | SRITISH COLUMBIA                      | <b>B</b>                       |
| EN'AN RD                                                                             | JERNON TENT                                 | DISTRICT                                                | PLAN A                                | t l                            |
| IM                                                                                   | A SITE IS                                   | UER NOW                                                 | Ö                                     |                                |
| RVEY                                                                                 | CASING DIAM.                                | ı =                                                     | COMPLETED                             | SHE                            |
| STRUCTION AIR RO                                                                     | CA                                          | ,01                                                     | PRODUCTION                            | CTION TEST SUMMARY             |
| SCREEN                                                                               | LENGTH                                      | TYPE                                                    | BALL TEST DRICCER BALL TEST PUMP TEST | DURATION OF TEST               |
| PERFORATED CASING   LENGTH GRAVEL PACK   LENGTH                                      | DIAM. SIZE GRAVEL, ETC                      |                                                         | WATER LEVEL AT COMPLETION             | OF TEST                        |
| DISTANCE TO WATER OVERFLOW DESTIMATED WERNOW CROUND DATE OF WATER LEVEL MEASUREMENT. | WATER LEVEL  ARTESIAN  WATER USE  WATER USE | PRESSURE 10 6PM                                         | Z                                     | G RATE SETTING (OC)            |
| CHEMISTRY                                                                            |                                             |                                                         |                                       | II                             |
| TEST BY                                                                              |                                             | DATE                                                    | 0 -0                                  | BROWN TILL & BOCK GRAVEL       |
| TOTAL DISSOLVED SOLIDSmg/l TEMPERATUREMmhos/cmAT25°C TOTAL IRON (Fe)                 |                                             | SILICA (SIO <sub>2</sub> )mg/1 (CaCO <sub>3</sub> )mg/1 |                                       | BLUE BOCK - VE<br>BLUE WITH HA |
| LKALINITY (COCO3)                                                                    | ALINITY (Co COs)mq/1                        | ANESE(Mn)                                               | 40' 90' GRE                           | -7 (1)                         |
| COLOUR                                                                               | ODOUR                                       | TURBIDITY                                               | 90' 130' CRA                          | CRACKED BROWN ROCK WITH        |
| ANIONS mg/l epm                                                                      | CATIONS                                     | шд» 1/6ш                                                | 130' 160' DACK B                      | 4 1 -                          |
| CARBONATE (COS)                                                                      | CALCIUM (Ca)                                |                                                         | 1,061                                 | WE BLUE ROCK                   |
| SULPHATE (SO <sub>4</sub> )                                                          | SODIUM (Na)                                 |                                                         | S ZIO DADLY<br>BROW                   | BROWN ROCK                     |
| NO2 + NO3 (NITROGEN)                                                                 | IRON (DISSOLVED)                            | (0                                                      | (                                     | Danes                          |
| TKN. (NITROGEN)                                                                      |                                             |                                                         | D HIT                                 |                                |
| THOSTHOROS (T)                                                                       | CHEMISTRY SITE NO.                          |                                                         |                                       | 100' 3 6PM                     |
|                                                                                      |                                             |                                                         |                                       | 545-116                        |
| TEST BY. DATE.                                                                       | EQUIPMENT US                                | USEO                                                    |                                       |                                |
|                                                                                      |                                             |                                                         |                                       |                                |
| CONTENTS OF FOLDER                                                                   | □ PUMP TEST DATA                            | CHEMICAL ANALYSIS                                       |                                       |                                |
| OTHER                                                                                | ☐ GEOPHYSICAL LOGS                          | □ REPORT                                                |                                       |                                |
| SOURCES OF INFORMATION DRILLER                                                       |                                             |                                                         |                                       |                                |

|                  | NORTH        |      |
|------------------|--------------|------|
| WEST             | SOUTH        | EAST |
| ADDITIONAL D     | ATA ADDED BY |      |
| Located by place |              |      |

Signoture

18. CONTRACTOR, Address

K. T. W. Drilling Std.

Wirner 13. C. 3905 17 Lave

Member, BCWWDA Dyes Ono;







| MTN:49639 #3/ | TORIA, BRITISH COLUMBIA  PLAN 32888  LICENCE NO. DATE  Z   WELL NO.   E                                                             | DATE COMPLETED SILIZ NAT. TOPO. SHEET NO. SHEET NO. SHEET SUMMARY                               | TEST TION OF 1 SPECIF SPECIF STORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FROM TO 12 40 45 95 45 95 115 126 115 126 115 126 115 115 115 115 115 115 115 115 115 11                          | WHIER HIT AT AS' 34 GPM 105' A'4 GPM 5 AC                                                                                                                                                                                                                                   |                                                                                          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|               | WELL RECORD MATER INVESTIGATIONS BRANCH VIC                                                                                         | A SITE S COMP 52 VERNON DIAM.                                                                   | E CASING DIAM LENGTH LENGTH LENGTH LENGTH LENGTH LENGTH LENGTH SIZE GRAVEL, ETC SIZE GRAVEL, ETC VATION ARTESIAN WATER USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE  SILICA (SIO2)  mg/l TOTAL HARDNESS (CaCO <sub>3</sub> )  LINITY (Ca CO <sub>3</sub> )  TURBIDITY  TURBIDITY | CALCIUM (Ca)  MAGNESIUM (Mg)  SODIUM (Nd)  POTASSIUM (K)  IRON (DISSOLVED)  CHEMISTRY SITE NO.  EQUIPMENT USED                                                                                                                                                              | D PUMP TEST DATA D CHEMICAL ANALYSIS                                                     |
| 821.034.2.4.1 | WATER WELL  DEPT. OF ENVIRONMENT, WATER RESOURCES SERVICE, WAJER  LEGAL DESCRIPTION: LOT  DESCRIPTIVE LOCATION MACLENNAN RD, JERNON | OWNER'S NAME DESTINAS - BOB CALLOWING  DRILLER'S NAME KEW DESTLAND  DEPTH 120 OF CASING  CASING | NSTRUCTION AIR ROTARY  ION SCREEN CANNO SCREEN CANNO C | TEST BY                                                                                                           | CARBONATE (CO <sub>3</sub> )  BICARBONATE (HCO <sub>3</sub> )  SULPHATE (SO <sub>4</sub> )  CHLORIDE (CI)  NO <sub>2</sub> + NO <sub>3</sub> (NITROGEN)  TKN - TOTAL KJELDAHL NITROGEN  NO <sub>2</sub> = NITRITE NO <sub>3</sub> = NITRATE  CHEMISTRY FIELD TESTS  TEST BY | CONTENTS OF FOLDER  M DRILL LOG  I SIEVE ANALYSIS  OTHER  SOURCES OF INFORMATION DRILLER |

|                     | NORTH    |  |
|---------------------|----------|--|
| WEST                | EAST     |  |
| CARD BYADDITIONAL D | DATEDATE |  |
| REMARKS             |          |  |

## McHARG DRILLING LTD.

HIGHWAY 97B, R.R. 3 ☐ SALMON ARM, B.C. ☐ VOE 2TO PHONE 832-3264 ☐ MOBILE N497066

| DateOaT                    | 22.85                                   |                      |
|----------------------------|-----------------------------------------|----------------------|
| Owner's Name Tel CeasT     |                                         |                      |
| Address Box 308 Venuer.    |                                         |                      |
| Location M. D.Conner Lot G | Plan 1362 Ho                            | e No. 4              |
| 0.8. C1. RKs.              |                                         |                      |
| 8-345 Bedrock              | Press fra                               | 6222                 |
|                            |                                         |                      |
|                            |                                         |                      |
|                            |                                         |                      |
| Total Depth 345            | *************************************** |                      |
| 1. Casing Size Type        | Set From                                | то 2                 |
| 2. Casing Size Type        | Set From                                | То                   |
| 1. Screen                  | Length                                  | Slot                 |
| 2. Screen                  |                                         |                      |
| Set F                      | rom1                                    | о                    |
| Pump Tested A In A G       | PM Draw                                 | Down                 |
| Recommended Pumping Rate   | 3                                       |                      |
| Static Water Level 1       | Recommended Pump s                      | et at <u>200</u> ft. |
| Drilling 345' @ 15 9°      |                                         |                      |
| Casing 9                   |                                         | \$ 1/E               |
| Screen(s)                  |                                         | \$                   |
| Drive Shoe                 |                                         | \$ 70.00             |
| K-Packer                   |                                         | \$                   |
| Developing                 |                                         | \$                   |
| Other No Interes           | T fin                                   | \$                   |
| 6 months                   | then Dey                                | \$                   |
|                            | MAZ E MAN                               | \$                   |
| Total Cost of Well         | Tay of                                  | \$ 52 45.00          |
| Amount Paid                | 110 21                                  | \$                   |
| Balance                    | 13-24                                   | \$                   |
| Owner's Signature          | McHARG DRILLING                         | LTD.                 |
| Maloun                     | Sou Mar                                 | Land                 |
| / W. W. W.                 | Per 1                                   |                      |

Terms: Cash. 2% per month or 24% per annum charged on overdue accounts.

## MCHARG DRILLING LTD.

HIGHWAY 976, R.R. 3 IN SAUMON ARM, B.C. IN VOE 2TO PHONE 632-3264 IN WORLE NASZOGG

| c q                                      | Date                    |
|------------------------------------------|-------------------------|
| a V                                      | Owner's Name            |
| 10/65                                    | Address                 |
| old slotte! of sell                      | Location Last           |
| by other                                 |                         |
| 21, Or =                                 |                         |
|                                          |                         |
|                                          |                         |
|                                          |                         |
|                                          | Total Depth             |
| Type Set From To                         | 1. Casing Size          |
| Type Set Bromes to To                    | 2. Cesting Size         |
| tol2 flangth Slot                        | 1. Sgreen               |
| tai? Atgne.                              | 2. Schoen               |
| From To                                  | Set 1 1 198             |
| CPM Draw Down                            | Pump Tested             |
|                                          | Recommended Pumpling    |
| Recommended Pump set at                  |                         |
|                                          | Drilling                |
|                                          |                         |
|                                          | Screen(s)               |
|                                          | Drive Shoe              |
|                                          | K-Packer                |
|                                          | Developing              |
|                                          | Other 2                 |
| 8405                                     |                         |
| 3366                                     |                         |
| 6450                                     | Total Cost of Well Land |
| 18.21 5<br>75-66<br>. CTJ DMILLING 62.70 | Amount Faid             |
| 7566                                     | Balanca                 |
| O TARABOLITO                             | Owner's Signature       |
| 1520                                     |                         |

amorale and 33, 30 morale or 24% per around 1965 Aleas remove



| 2   |
|-----|
| 5   |
| T   |
| 195 |
| 5   |
|     |
| 2   |
| -   |
| 3   |
|     |

| D A W W B C |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |

Water Management Branch Date 19, 110,612,21 WATER WELL RECORD ELEV L 232 nd Str. RR #8, Langley, B.C. Owners Name & Address MA. ALVIN STOBBE 7078 13A6H4 Legal Description & Address. Descriptive Location KETLESTON RD. VEKNON B.C. 1 New Well 2 Reconditioned 1 Steel 2 Galvanized
4 D Plastic 5 Concrete 9. CASING: 2 Galvanized 3 Wood 3 Deepened OF WORK 4 Abandoned Materials WORK
METHOD

1 Coble tool 2 Bored 3 Jetted
Rotary a mud b Gair C reverse Other units 2. WORK ins Diameter ins WATER 1 Domestic 2 Municipal 3 | Irrigation WELL USE4 | Comm. & Ind. | Other from 0 ft 10 104 ft Thickness . 188 ins 4. DRILLING ADDITIVES Weight 14 lb/ft 5. MEASUREMENTS from 1 Erground level 2 1 top of casing Pitless unit\_ \_ft 1 above 2 below ground level casing height above ground level\_ 1 Welded 2 Cemented 3 Threaded 1 Wew 2 Used FROM SWL 6. WELL LOG DESCRIPTION Perforations: O 70 GREY CEMENTED CLAY Shoe (\$): 155 + BOULDERS Open hole, from 104 to 405 ft Diameter 6 70 80 GREY CLAY TILL WITH SILTY SAND LENSES IO. SCREEN: 1 ☐ Nominal (Telescope) 2 ☐ Pipe Size 80 94 GREY CEMENTED CLAY Type 1 □ Continuous Slot 2 □ Perforated 3 □ Louvre + ROCKS Other\_ Material 1 Stainless Steel 2 Plastic Other 94 98 GREY SILTY SANDA GRAVEL 18 Set from\_\_\_ \_ft below ground level 98 104 GREY CLAY + ROCKS \_to\_\_ 104 405 SHALE BEDROCK RISER, ŞCREEN & BLANKS units Length BANK 80 20 ft Diam. I D ins 4 Slot Size BLANK . 010 ins +2 84 ft to 84 104 ft bottom KPACKER Fittings, top\_\_\_\_ Gravel Pack II. DEVELOPED BY: 1 Surging 2 Jetting 3 Air 4 Bailing 5 Pumping Other\_ 12. TEST 1 12 Pump 2 | Bail 3 | Air Date 19 1 0 5 3 1 Rate 1/2 USgpm Temp \_\_\_ C SWL before test 18 ft Water Level 60 ft after test of 5 hrs RECOVERY in ft ☐ DRAWDOWN in ft mins WL mins WL mins RECOMMENDED PUMP SETTING RECOMMENDED PUMPING RATE RECOMMENDED PUMP TYPE 80 SUBMERSIBLE A PROX. 1/2 USgpm 14. WATER TYPE: 1 Offesh 2 | salty 3 | clear 4 Octoudy \_\_\_\_\_; gas 1 🗆 yes 2 🛂 100 colour\_\_\_\_\_smell\_\_ 1 Hardness | mg/L 15. WATER ANALYSIS: 7. CONSULTANT\_ 3 Chloride mg/L 2 Iron mg/L Address 4 pH Field Date 8. WELL LOCATION SKETCH SITE I D No Lab Date 16. FINAL WELL COMPLETION DATA Well Yield 1/2 US gpm Well Depth 104 ft Static Water Level 1/8 ft Flow US gpm Pressure 1 ft Well Head Completion CAPPED 17. DRILLER SICHIBLIA Signature Man Shibli M. SCHIBLI DRILLING 18. CONTRACTOR, R.R. # LUMBY B.C. 00 € 260 Member, BCWWDA Lyes Ono ;\_



0

WELL NO.

WTN 7/668

MAP 0824.034.2.2.4

BCGS

7



BRITISH ECOCAT Environment OLUMBIA WATER WELL

wh 84211

Water Management Division

| - 111       |             | Weler                                                                    |                    | Location Location                                                                                      |            |
|-------------|-------------|--------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|------------|
| NTS<br>VZ   | MAP L       | E                                                                        | WELL No. L         | N Date 19 Type                                                                                         |            |
| Owners      | Name        | & Address KATH Y CALLOW                                                  | VAY 90             | 7480 HITCHCOCK RD. VERNON BC. VAE                                                                      | 3/18       |
| Legal (     | Descrip     | Non & Address LOT 6 KAP 4                                                | 19151              | 0,0,4,0,                                                                                               | _          |
| Descrip     | tive Lo     | ocotion                                                                  | 150                | 37.7                                                                                                   |            |
| . TYP       |             | 1 New Wall 2 Recond                                                      |                    | 9. CASING: 1 (Steel 2 Galyanized 3 Wood Materials 4 Plastic 5 Concrete                                 | d          |
| 2. WO<br>ME | RK<br>THOD  | 1 Cable fool 2 Bored 3 D<br>4 D Rotory a mud b Off c                     | Jetted<br>Ireversa | Mole Diameter 6                                                                                        | ins<br>Ins |
| 3. WA       | TER<br>LL U | 1 D Comestic 2 Municipal 3 D                                             | Irrigation         | from 0                                                                                                 | FF FF      |
| 4. DRI      | ILLIN       | G ADDITIVES -                                                            |                    | Thickness 188<br>Weight 12.92                                                                          | ins        |
| 5. ME       | ASUR        | EMENTS from 1 (Figround level 2 (1) top casing height above ground level |                    | Weight                                                                                                 | lb/ft      |
| FROM        | TO<br>fr    | 6. WELL LOG DESCRIPTION                                                  | SWL                | Perforations:                                                                                          | 4550       |
| 0           | 5           | BROWN CLAY + ROCKS                                                       |                    | Shoe (p): 4 E.S                                                                                        |            |
| 5           | 11          | GREY CLAY, ROCKS +                                                       |                    | Open hole, from 11 to 470 ft Diameter 6                                                                | ins        |
| 17          | 2/10        | COBBLES"                                                                 |                    | Grout :                                                                                                |            |
| 11          | 270         | GREY BROWN MICA<br>SHIST WITH QUARTZ                                     |                    | IQ. SCREEN: 1 Nominal (Telescope) 2 Pipe Size                                                          |            |
|             |             | LENSES                                                                   | 110                | Type 1 □ Continuous Stot 2 □ Perforated 3 □ Lo                                                         | Ovie       |
| 340         | 435         | C-REY GRANITE                                                            |                    | Material 1 Stainless Steel 2 Plastic Other                                                             |            |
|             |             | GREY GRANITE WITH                                                        |                    | Set from                                                                                               |            |
| 40.00       |             | QUARTZ SEAMS(FRACT                                                       | TURED )            |                                                                                                        | units      |
| 440         | 470         | GREY C-RANITE                                                            |                    | Cength<br>Diam. I D                                                                                    | fi         |
| _           |             |                                                                          |                    | Slot Size                                                                                              | ins        |
|             |             |                                                                          |                    | from                                                                                                   | fi         |
|             |             |                                                                          |                    | to                                                                                                     | ŤŤ         |
|             |             |                                                                          |                    | Fittings, topbottom<br>Gravel Pack                                                                     |            |
|             |             |                                                                          |                    |                                                                                                        |            |
|             |             |                                                                          |                    | II. DEVELOPED BY: 1 □ Surging 2 □ Jetting 3 ≥ 4 □ Bailing 5 □ Pumping □ Other                          | Air        |
|             |             |                                                                          |                    |                                                                                                        | , 0        |
|             |             |                                                                          |                    | 12. TEST1   Pump 2   Boil 3   FAir   Date   2   2   2   6     Rot   10   USgpm   TempC SWL before test |            |
|             |             |                                                                          |                    | Water Levelft ofter test ofhrs                                                                         |            |
|             |             |                                                                          |                    | ☐ DRAWDOWN in ft ☐ RECOVERY in ft                                                                      |            |
|             |             |                                                                          |                    | mins WL mins WL mins WL mins                                                                           | WL         |
| _           | -           |                                                                          |                    |                                                                                                        |            |
| _           | -           |                                                                          |                    |                                                                                                        |            |
| _           |             |                                                                          |                    | RECOMMENDED PUMP TYPE RECOMMENDED PUMP SETTING RECOMMENDED PUMP                                        |            |
|             |             |                                                                          |                    | SUBMERSIBLE 450 " APROX, 10                                                                            | 2 USgpm    |
|             |             |                                                                          |                    | 14. WATER TYPE:1 €fresh 2 □solty 3 □cleor 4 □                                                          |            |
|             |             |                                                                          |                    | colour                                                                                                 | no         |
| 7 CON       | ISULT       | ANT                                                                      |                    | 15. WATER ANALYSIS: 1 Hardness                                                                         | mg/L       |
|             | ress        |                                                                          |                    |                                                                                                        | ng/L       |
| B. WE       | LL L        | OCATION SKETCH                                                           | Terror.            | 4 pH Field Dote                                                                                        | - 1        |
| ,           |             |                                                                          |                    | E I D No Lab Date Lin Lin Mo                                                                           | DX         |
|             |             | 16                                                                       |                    | WELL COMPLETION DATA EST.                                                                              |            |
|             |             |                                                                          |                    | Well Yield US gp                                                                                       | m          |
|             |             |                                                                          | Static Wat         |                                                                                                        | FI         |
|             |             |                                                                          | Back fille         |                                                                                                        |            |
|             |             | 1.1                                                                      |                    | Completion CAPPED                                                                                      |            |
|             |             |                                                                          |                    | O LINER                                                                                                |            |
|             |             |                                                                          |                    | SURNAME FIRST NAME                                                                                     |            |
|             |             | 17                                                                       | DRILLE             | Signature Man Soll.                                                                                    |            |
|             |             | 18                                                                       | . CONTRA           |                                                                                                        | -          |
|             |             |                                                                          | Address            | CTOR, SCHIBLI DRILLING                                                                                 |            |
|             |             |                                                                          |                    | BOX 729 LUMBY BC.                                                                                      |            |
|             |             |                                                                          |                    | VOE 260                                                                                                |            |
|             |             |                                                                          | Member,            | BCWWDA Dyes Dno ;                                                                                      |            |



■ Well Construction Report
■ Well Closure Report
■ Well Alteration Report

Integrity Drilling
Inc
Stamp company nameladdress/
phonelfax/e-mail here, if desired.

| Ministry Well ID Plate Number: 28035 Ministry Well Tag Number: 97354 |
|----------------------------------------------------------------------|
| ☐ Confirmation/alternative specs. attached                           |
| Original well construction report attached                           |

| Red let                 | -                     | licates minin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | num manda                           | tory infor                    | mation.                                 |                                |                                                                        | s            | ee revers           | e for n   | otes & definitions of a                                       | bbreviations. |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|-----------------------------------------|--------------------------------|------------------------------------------------------------------------|--------------|---------------------|-----------|---------------------------------------------------------------|---------------|
| Owner n                 | ame:                  | PAH A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO SH                               | arlyon                        | LACE                                    | ISSE                           |                                                                        |              |                     |           |                                                               |               |
| Mailing a               | ddress:               | 7925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WILSO                               | & JA                          | KSON 1                                  | 20                             | Town                                                                   | VE           | RNON                |           | Prov. BC Postal                                               | Code VIB 3V5  |
| Well Loc                | ation: Ad             | dress: Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | no. 79                              | 05 U                          | Street name                             | e WILS                         | Sord JAC                                                               | K.ScH        | RA                  | Tow       | n VERNON                                                      |               |
| ~                       |                       | ion: Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                               |                                         |                                |                                                                        |              | Twp                 | F         | Rg. Land District                                             |               |
| (or) PID:               |                       | (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd Descrip                          | otion of w                    | ell location                            | (attach sk                     | ketch, if nec.):                                                       | A            |                     |           |                                                               | 08/1          |
| NAD 83                  | Zanai                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CPTM NI-                            | and the Linears               |                                         |                                |                                                                        |              | Latituda            | 000 00    | te 3): 500 19                                                 | 62.86"        |
| (see note               |                       | (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UTM Ea                              | orthing:<br>esting:           |                                         |                                | m<br>m                                                                 | or           | Longitude           | 9: /      | 190 11.651                                                    | w             |
| Method (                | of drilling           | air rotary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | able tool                           | mud r                         | otary 🗌 au                              | ger 🗌 driv                     | ving i jetting                                                         | g 🗆 exca     | avating             | other (   | 19° 11.651<br>specify): 39                                    | .06"          |
|                         |                       | l: vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       | note 5): 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
| Water sup               | ply wells: in         | dicate intended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water use: 🗵                        | private dom                   | estic  wat                              | ter supply s                   | ystem 🗌 irriga                                                         | ation 🗆 c    | ommercial o         | or indust | rial other (specify):                                         |               |
| Lithol                  | ogic des              | cription (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ee notes 7-1                        | 4) or clo                     | sure des                                | cription                       | (see notes 15                                                          | 5 and 16)    | Water-be            | aring     |                                                               |               |
| From<br>ft (bgl)        | To<br>ft (bgl)        | Relative<br>Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Colour                              |                               |                                         |                                | ended terms or nount, if applica                                       |              | Estimated<br>(USgp  |           | Observations (e.g., fracti<br>well sorted, silty wash),       |               |
| (1,03.)                 | 11,1150               | (35,57,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | - Liot III                    | 0,40, 0, 400                            | a causing an                   | outing in supplies                                                     |              | (3                  | ,         |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | -                             | -                                       |                                |                                                                        | -            |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                | 0                                                                      | 1-4-11-      |                     |           |                                                               |               |
| From                    | details<br>To         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng Material /                       | Onen Hole                     | Wall                                    | Drive I                        | Screen                                                                 | To           | Dia                 |           | Type (see note 18)                                            | Slot Size     |
| ft (bgl)                | ft (bgl)              | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng waterial /                       | Open note                     | iri                                     | Shoe                           | ft (bgl)                                                               | ft (bgl)     | in                  |           | Type (see note 10)                                            | Slot Size     |
| +2                      | 40                    | 65/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STE                                 | EL                            | 250                                     |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                |                                                                        |              |                     |           |                                                               |               |
| Surface s               | eal: Type:            | BEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TONITE                              |                               | epth: /                                 | 5 ft                           | Intake:                                                                | Screen [     | Open bo             | ottom [   | Uncased hole                                                  |               |
|                         |                       | Poured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                               | /                                       | in                             | Screen type                                                            | e: Teles     | scope               | Pipe siz  | e                                                             |               |
| Backfill: T             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               | Depth:                                  | ft                             |                                                                        |              |                     |           | Plastic   Other (spec                                         |               |
| Liner:                  | PVC 🗆                 | Other (specify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ):                                  |                               |                                         |                                |                                                                        |              | -                   | -         | Slotted Perforated                                            |               |
| Diameter:               | Section of the second | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Thickness:                    |                                         | in                             | Screen bott<br>Filter pack:                                            |              | ft To:              | -         | late Other (specify): Thickness:                              | in            |
| From:                   | ft (bgl) T            | o: ft (bgl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Perforated: F                       | rom:f                         | (bgl) To:                               | ft (bgl)                       | Type and si                                                            |              |                     |           | IIIIGNIESS.                                                   |               |
| Develo                  | ped by:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               | _                                       | _                              | Final we                                                               |              |                     | data:     |                                                               |               |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Domei                             | na 🗆 Daili                    |                                         |                                | Total depth                                                            |              | 420                 | ft        | Finished well depth:                                          | 420 ft (bgl)  |
|                         | (specify):            | ging    Jettin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g 🗀 Pumpir                          |                               | duration:                               | / hrs                          | Final stick up: # 2FF in Depth to bedrock: ft (bgl)                    |              |                     |           |                                                               |               |
| Notes:                  | (opening)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                                         |                                | SWL:                                                                   | 15           | ft (bt              |           | Estimated well yield:                                         | USgpm         |
| Well vi                 | eld esti              | mated by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                               |                                         |                                | Artesian flo                                                           | w:           | No                  | USgpr     | n, or Artesian pressure                                       | ft            |
|                         |                       | lifting Bail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing U Othe                          | r (specify):_                 |                                         |                                | Type of wel                                                            |              |                     | PRO       | Well disinfecte                                               | ed: Yes No    |
| Rate:                   |                       | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gpm Duratio                         | on:                           | 1                                       | hrs                            | Where well                                                             |              | -                   | ) / C     | CAS146                                                        |               |
| SWL befo                |                       | and the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) Pumping                           | No.                           | 420                                     | _ft (btoc)                     | Reason for                                                             |              | iormani             | JII.      |                                                               |               |
|                         |                       | □ Clear □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                               | 7000                                    |                                |                                                                        |              | Poured              | Pum       | ped                                                           |               |
|                         |                       | Li Clear Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cloudy LI S                         |                               |                                         |                                | Method of closure: Poured Pumped  Sealant material: Backfill material: |              |                     |           |                                                               |               |
| Colour/od               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | _ Water s                     | ample collec                            | zea: □                         | Details of clo                                                         | osure (see   | note 17):           |           |                                                               |               |
|                         | riller (prir          | and the same of th | · nas                               | 0.00                          | 12101                                   | 1000                           | -                                                                      |              |                     |           |                                                               |               |
|                         |                       | (see note 19)<br>ee note 20):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400                                 |                               | -                                       | LEFE                           | Date of v                                                              | Nork M       | /YY/MM/DI           | D).       |                                                               |               |
|                         |                       | cable; name an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                   | 704                           | -                                       |                                | Started:                                                               | 2007         | 1061                | 16        | Completed: 2007                                               | 7 /01/16      |
| DECLARA                 | ATION: Well           | construction, we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ell alteration or                   | well closure                  | as the case                             | may be,                        | Comments                                                               | PR           | ESSUR               | E /       | RACTURE EXI                                                   | Elys were     |
| Water Pro               | tection Regi          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                 | n the water                   | Act and the G                           | nouriu                         |                                                                        | -            |                     |           |                                                               |               |
| Signatu                 | NOTE: The             | er Responsil<br>nformation recor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ded in this well                    | I report desc                 | ribes the work                          | s and hydro                    | geologic conditi                                                       | ons at the t | ime of cons         | truction  | white: Customer copy                                          |               |
| alteration<br>number of | or closure, a         | s the case may<br>uding natural va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | be. Well yield,<br>riability, human | well perform<br>activities ar | ance and wat                            | er quality and<br>f the works. | e not guarantee<br>which may char                                      | d as they a  | re influence<br>ne. | d by a    | white: Customer copy canary: Driller copy pink: Ministry copy | heetof        |
| 50                      | 0019                  | 52.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6" 11                               | 9011                          |                                         | 06"                            | 088                                                                    | DL. O        | 00                  | 131       |                                                               |               |

### **Well Summary**

Well Tag Number: 98962
Well Identification Plate Number:
Owner Name: DAN LACASSE
Intended Water Use: Unknown Well Use
Artesian Condition: No

Well Status: Alteration
Well Class: Water Supply
Well Subclass: Not Applicable
Aquifer Number:

Observation Well Number: Observation Well Status: Environmental Monitoring System (EMS) ID: Alternative specs submitted: No

#### Licensing Information

Licensed Status: Unlicensed

Licence Number:

#### **Location Information**

Street Address: 7925 WILSON JACKSON ROAD

Town/City: VERNON

#### Legal Description:

| Lat                                       |  |
|-------------------------------------------|--|
| Plan                                      |  |
| District Lot                              |  |
| Block                                     |  |
| Section                                   |  |
| Township                                  |  |
| Range                                     |  |
| Land District                             |  |
| Property Identification Description (PID) |  |

Description of Well Location: NORTH SIDE OF PROPERTY HOLE #1.



Geographic Coordinates - North American Datum of 1983 (NAD 83)

**Latitude:** 50.330607 **UTM Easting:** 344020 **Zone:** 11 Longitude: -119.191616 UTM Northing: 5577687 Coordinate Acquisition Code:

(unknown, accuracy based on parcel size) No ICF cadastre, poor or no location sketch; site located in center

of primary parcel

#### Well Activity

| Activity      | Work End Date | <b>\$</b> | Drilling Company          | Date Entered                  |
|---------------|---------------|-----------|---------------------------|-------------------------------|
| Legacy record |               |           | Schib <b>l</b> i Drilling | February 17th 2010 at 4:50 AM |

#### Well Work Dates

| Start Date of | End Date of  | Start Date of | End Date of | Start Date of | End Date of  |
|---------------|--------------|---------------|-------------|---------------|--------------|
| Construction  | Construction | Alteration    | Alteration  | Decommission  | Decommission |
|               |              | 2000-08-21    | 2000-08-21  |               |              |

#### Well Completion Data

Total Depth Drilled: Finished Well Depth: 640 ft bgl Final Casing Stick Up:

Depth to Bedrock: Ground elevation:

Estimated Well Yield: 0.25 USgpm

Well Cap: CAPPED

Well Disinfected Status: Not Disinfected

Drilling Method: Air Rotary

Method of determining elevation: Unknown

Static Water Level (BTOC): 5 feet btoc

Artesian Howa

Artesian Pressure (head): Artesian Pressure (PSI): Orientation of Well: VERTICAL

#### Lithology

| From (ft<br>bgl) | To (ft<br>bgl) | Raw<br>Data | Description | Moisture | Calaur            | Hardness | Observations                             | Water Bearing Flow Estimate<br>(USGPM) |
|------------------|----------------|-------------|-------------|----------|-------------------|----------|------------------------------------------|----------------------------------------|
| 300              | 640            |             |             |          | vari-<br>coloured |          | GREY GRANITE WITH BLACK SCHIST<br>LAYERS |                                        |

#### Casing Details

| From (ft bgl) | To (ft bgl) | Casing Type | Casing Material | Diameter (in) | Wall Thickness (in) | Drive Shoe    |
|---------------|-------------|-------------|-----------------|---------------|---------------------|---------------|
| 6             | 640         |             | Open hole       | 6             |                     | Not Installed |

#### Surface Seal and Backfill Details

Surface Seal Material:

Surface Seal Installation Method: Surface Seal Thickness:

Surface Seal Depth:

Backfill Material Above Surface Seal:

Backfill Depth:

#### Liner Details

Liner Material: Liner Diameter: Liner from:

Liner Thickness Liner to:

Liner perforations

From (ft bgl) To (ft bgl)

There are no records to show

#### Screen Details

Intake Method:

Type: Material: Opening: Battam:

Installed Screens

From (ft bgl) To (ft bgl) Diameter (in) Assembly Type Slot Size

There are no records to show

#### Well Development

Developed by: Air lifting

Development Total Duration:

#### Well Yield

Estimation Method: Air Lifting

Static Water Level Before Test: 5 ft (btoc)

Hydrofracturing Performed: No

Estimation Rate: 0.25 USgpm

Dirawdown:

Increase in Yield Due to Hydrofracturing:

Estimation Duration: 1 hours

#### Well Decommission Information

Reason for Decommission: Sealant Material: Decommission Details:

Method of Decommission: Backfill Material:

Comments

LINER RECOMMENDED IF PUMP IS TO BE INSTALLED.

Alternative Specs Submitted: Yes

#### **Documents**

No additional documentation available for this well

#### Disclaimer

The information provided should not be used as a basis for making financial or any other commitments. The Government of British Columbia accepts no liability for the accuracy, availability, suitability, reliability, usability, completeness or timeliness of the data or graphical depictions rendered from the data.



Ministry of

# Mell Construction Report Drilling Ltd

☐ Well Closure Report

Stamp company name/address/ Environment Well Alteration Report phone/fax/e-mail here, if desired.

| Ministry Well ID Plate Number: 385 47      |
|--------------------------------------------|
| Ministry Well Tag Number: 169891           |
| Confirmation/alternative specs. attached   |
| Original well construction report attached |

| Red let                                                                                                                                                 | ttering in     | dicates r    | ninimum manda                                   | DESCRIPTION OF THE OWNER, OR WHOLE SERVICES | tion.                              |                                        | S                                                                                                                | ee reverse          | for notes & defi                        | nitions of abbre                               | viations. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------------------------------------------|---------------------------------------------|------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|------------------------------------------------|-----------|
| Owner n                                                                                                                                                 | ame:           | Robz         | rt Gu                                           | lloway                                      |                                    |                                        |                                                                                                                  |                     |                                         |                                                |           |
|                                                                                                                                                         | address:       |              |                                                 | -                                           | -                                  |                                        | VERY                                                                                                             | non                 | Prov.                                   | Postal Code                                    | 11B 357   |
| Well Location: Address: Street no. 7601 Street name McLannon Rd Town Ugrnon.                                                                            |                |              |                                                 |                                             |                                    |                                        |                                                                                                                  |                     |                                         |                                                |           |
| or Legal description: Lot Plan D.L. Block Sec. Twp. Rg. Land District  Or PID: 010 - 99+35 (and) Description of well location (attach sketch, if nec.): |                |              |                                                 |                                             |                                    |                                        |                                                                                                                  |                     |                                         |                                                |           |
| or PIU:                                                                                                                                                 | 010            | 991          | and Descrip                                     | otion of well                               | iocation (attac                    | sketch, if nec.):                      |                                                                                                                  |                     | //                                      |                                                |           |
| NAD 83<br>(see note                                                                                                                                     | Zone: /        | lod 8        | UTM E                                           | esting: 119                                 | 0 13. 29                           | 6 W. m                                 | or                                                                                                               | Latitude (s         | see note 3): 50                         | 19/50,2                                        | 8"        |
| Method                                                                                                                                                  | of drilling    | i 🖫 air n    | otary Cable too                                 | ☐ mud rotar                                 | ry auger                           | driving ietting                        | exca                                                                                                             | vating              | other (specify):                        | 11,10                                          |           |
|                                                                                                                                                         |                |              | tical  horizontal                               |                                             | -                                  |                                        |                                                                                                                  |                     |                                         |                                                |           |
| Class of                                                                                                                                                | well (see      | note 5):     | Water 5                                         | Supply                                      | Sub-cla                            | s of well:                             | Dome                                                                                                             | stic                |                                         |                                                |           |
| Water sup                                                                                                                                               | ply wells: ir  | ndicate inte | ended water use: 🕎                              | private domesti                             | c water supp                       | y system 🔲 irriga                      | ition 🗆 co                                                                                                       | ommercial o         | r industrial  other                     | (specify):                                     |           |
| Lithol                                                                                                                                                  | ogic de        | scriptio     | on (see notes 7-1                               | 4) or closu                                 | re descripti                       | On (see notes 15                       | and 16)                                                                                                          | Water-bea           | aring                                   |                                                |           |
| ft (bgl)                                                                                                                                                | To<br>ft (bgl) | Relati       |                                                 |                                             |                                    | nmended terms on<br>amount, if applica |                                                                                                                  | Estimated<br>(USgpr | Flow Observation                        | s (e.g., fractured, w<br>, silty wash), closur |           |
| 0                                                                                                                                                       | 4              | 5            | Black                                           | 5,14                                        | -                                  |                                        |                                                                                                                  |                     |                                         |                                                |           |
| 4                                                                                                                                                       | 78             | m            | Brown                                           | Gr                                          | ausl s                             | 11+                                    |                                                                                                                  |                     |                                         |                                                |           |
| 78                                                                                                                                                      | 80             | m            | Purpla                                          |                                             | rd rock                            |                                        |                                                                                                                  |                     |                                         |                                                |           |
| 80                                                                                                                                                      | 92             | m            |                                                 |                                             | 16 166                             |                                        | ALC: UNI                                                                                                         |                     | THE PARTY                               |                                                |           |
| 92                                                                                                                                                      | 140            | m            | Grish                                           | ALL PROPERTY.                               |                                    |                                        |                                                                                                                  |                     |                                         |                                                |           |
| 140                                                                                                                                                     | 185            | 1-1          | Black -                                         | ulate                                       |                                    |                                        |                                                                                                                  | 761                 | m . Frac                                | t                                              |           |
| 185                                                                                                                                                     | 718            | U            |                                                 | + white                                     | mark                               | 1                                      |                                                                                                                  | 30                  |                                         | OVIC.                                          |           |
| 218                                                                                                                                                     | 220            | 5            |                                                 |                                             |                                    | Zi clas                                |                                                                                                                  | 201                 | 370                                     |                                                |           |
| -10                                                                                                                                                     | -40            | -            | DIVE                                            | unitz                                       | quar                               | C T CIA                                | )                                                                                                                |                     |                                         |                                                |           |
|                                                                                                                                                         |                |              |                                                 |                                             |                                    |                                        |                                                                                                                  |                     |                                         |                                                |           |
|                                                                                                                                                         |                |              |                                                 |                                             |                                    |                                        |                                                                                                                  |                     | 5                                       |                                                |           |
|                                                                                                                                                         |                |              |                                                 |                                             | 11 10 10 10                        |                                        |                                                                                                                  |                     | Carlo Mychen                            | Links                                          |           |
| From                                                                                                                                                    | details        | Dia          | Casing Material /                               | Open Hole   Th                              | Wall<br>ickness Drive              | Screen                                 | details                                                                                                          | Dia                 | Type (see i                             | note 18)                                       | Slot Size |
| ft (bgl)                                                                                                                                                | ft (bgl)       | in           |                                                 | opanii in                                   | in Shoe                            | ft (bgl)                               | ft (bgl)                                                                                                         | in                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1010 107                                       | NOT OIZO  |
| 0                                                                                                                                                       | 80             | 6            | 5/221                                           | 9                                           | 250 0                              |                                        |                                                                                                                  |                     |                                         |                                                |           |
|                                                                                                                                                         |                |              |                                                 |                                             |                                    |                                        | E. Dir                                                                                                           | -                   |                                         |                                                |           |
|                                                                                                                                                         |                |              |                                                 |                                             |                                    |                                        |                                                                                                                  |                     |                                         |                                                |           |
|                                                                                                                                                         |                | 1            | 1 1                                             |                                             |                                    |                                        |                                                                                                                  |                     |                                         | .5021                                          |           |
|                                                                                                                                                         |                |              | tonits                                          |                                             | h: 20 1                            |                                        |                                                                                                                  |                     | tom Uncased h                           | nole                                           |           |
| Method of<br>Backfill: T                                                                                                                                |                | n: 🔄 Pour    | red Pumped                                      | Thickness:<br>Dept                          | Z                                  |                                        | -                                                                                                                |                     | el Plastic                              | Other (specify):                               |           |
| Liner:                                                                                                                                                  | _              | Other (sp    | naciful:                                        | Бері                                        | u I,                               |                                        | _                                                                                                                |                     | slot Slotted                            |                                                |           |
| Diameter:                                                                                                                                               | 4.1            | in in        | outy).                                          | Thickness:                                  | 250 i                              | Screen botto                           | om: 🗆 Bai                                                                                                        | il Plug             | ☐ Plate ☐ Oth                           | er (specify):                                  |           |
| From: 20                                                                                                                                                | ft (bgl) T     | o:20 ft      | bgl) Perforated: F                              |                                             |                                    | ) Filter pack: I                       | Filter pack: From: ft To: ft Thickness: in                                                                       |                     |                                         |                                                |           |
|                                                                                                                                                         |                | 210          |                                                 |                                             |                                    | Type and siz                           |                                                                                                                  |                     |                                         | and the last                                   |           |
|                                                                                                                                                         | ped by         |              |                                                 |                                             |                                    | Final we<br>Total depth                |                                                                                                                  |                     |                                         | I double 220                                   | 4/5-11    |
| ☐ Other                                                                                                                                                 |                | rging 🗀      | Jetting Pumpir                                  |                                             | ation: 7 hu                        | Final etick u                          | Total depth drilled: 220 ft Finished well depth: 20 ft (bgl) Final stick up: 12 in Depth to bedrock: 78 ft (bgl) |                     |                                         |                                                |           |
| Notes:                                                                                                                                                  | (specify).     |              |                                                 | Total dura                                  | ation: Z hr                        |                                        | SWL: 39 ft (btoc) Estimated well yield: 30 USgpm                                                                 |                     |                                         |                                                |           |
| Well yi                                                                                                                                                 | eld esti       | imated       | by:                                             |                                             |                                    | Artesian flow                          | V:                                                                                                               | 77 1                | USgpm, or Artesian                      | pressure:                                      | ft        |
| Li rumping La Air mung Li bailing Li Other (specify).                                                                                                   |                |              |                                                 |                                             |                                    |                                        | Type of well cap: Wall disinfected: Yes No                                                                       |                     |                                         |                                                |           |
| Nate. 50 Oogpiii Durauuii.                                                                                                                              |                |              |                                                 |                                             |                                    |                                        | Well closure information:                                                                                        |                     |                                         |                                                |           |
|                                                                                                                                                         | re test:       | -            | t (bloc) Pumping                                |                                             | ft (btoo                           | Reason for o                           |                                                                                                                  | omatio              | 11.                                     |                                                |           |
|                                                                                                                                                         |                |              | y characteris                                   |                                             | as                                 | Method of cle                          |                                                                                                                  | Poured [            | Pumped                                  |                                                |           |
| Colour/odour: Water sample collected:                                                                                                                   |                |              |                                                 |                                             |                                    |                                        | Sealant material: Backfill material:  Details of closure (see note 17):                                          |                     |                                         |                                                |           |
|                                                                                                                                                         | riller (pri    |              |                                                 | 11                                          |                                    | 50.000                                 | 2310 (00001)                                                                                                     |                     |                                         |                                                |           |
| Name (first, last) (see note 19): Walts House Registration no. (see note 20): 050 81001  Date                                                           |                |              |                                                 |                                             |                                    |                                        | Date of work (YYYY/MM/DD):                                                                                       |                     |                                         |                                                |           |
| Consultant (if applicable; name and company):                                                                                                           |                |              |                                                 |                                             |                                    |                                        | Started: 2014 09 15 Completed: 2014 09 17                                                                        |                     |                                         |                                                |           |
| DECLARA<br>has been o                                                                                                                                   |                | construction | on, well alteration or<br>th the requirements i | well closure, as to the Water Act a         | the case may be.<br>and the Ground | Comments:                              |                                                                                                                  |                     |                                         |                                                | 1         |
|                                                                                                                                                         | re of Drill    |              | onsible                                         | Hay                                         |                                    |                                        |                                                                                                                  |                     | - I'm Lame                              |                                                |           |

#### General

- 1. Requirements for well construction and well closure reports are found in Part 5 of the Water Act and the Ground Water Protection Regulation. Part 5 of the act and regulation are at: http://www.env.gov.bc.ca/wsd/plan\_protect\_sustain/groundwater/index.html#leg.
- 2. The current Ministry standard datum for mapping and geodetic use is the North American Datum of 1983 (NAD 83). To determine GPS coordinates using a Global Positioning System (GPS), set the datum to NAD 83.
- 3. For latitude and longitude coordinates, provide coordinates either in degree, minutes and seconds (e.g., 50° 2' 21.037") or decimal degrees (e.g., 50.039175°).
- 4. For the method of determining ground elevation, enter: GPS, differential GPS, level, altimeter, 1:50,000 map, 1:20,000 map, 1:10,000 map or 1:5,000 map.
- 5. The classes and sub-classes of wells are shown below:

Sub-class (if applicable) Water supply ..... .....Domestic; Non-domestic Monitoring.....Temporary; Permanent Recharge or injection Dewatering or drainage .....Temporary; Permanent Remediation .....Temporary; Permanent ...Borehole: Test pit: Special type of hole: Closed loop geothermal Geotechnical

6. Well reports submitted to the Deputy Comptroller, or retained by the person responsible, as required under the Water Act and the Ground Water Protection Regulation, shall be considered part of the Provincial Government records and subject to the Freedom of Information and Protection of Privacy Act.

#### How to Fill Out the Lithologic Description Table

- 7. Each row in the lithologic description table represents either a depth interval or depth in the well.
- 8. A row could represent a depth interval (e.g., from 0 feet to 12 feet), such as for a geologic stratum or a specific depth (e.g., 120 feet), such as for a depth location of a water-bearing fracture.
- 9. For a depth interval, enter the relative hardness of the material in the column "Relative Hardness," if applicable: Very Hard (VH), Hard (H), Dense (D), Stiff (ST), Medium (M), Loose (L), Soft (S), Very Soft (VS).
- 10. For a depth interval, enter the letter for the overall colour of the geologic material in the column "Colour," if applicable: White (W). Grey (Gy), Blue (BI), Green (G), Yellow (Y), Brown (Br), Red (R), Tan (T), Black (Bk).
- 11. For each depth interval, enter the description of the geologic materials encountered during drilling in the column "Material Description." Material descriptions should be chosen from the following recommended list of m

Surficial materials (approximate range of particle size) boulders (greater than 10 inches) cobbles (21/2 inches to 10 inches) gravel (80 slot to 21/2 inches) coarse sand (25 slot to 80 slot) medium sand (10 slot to 25 slot) fine sand (2 slot to 10 slot) silt (less than 2 slot) clay (much less than 2 slot) till (variable particle size) organics (e.g., top soil, wood, peat)

Bedrock mate conglomerate sandstone shale siltstone limestone crystalline granite basalt volcanic bedrock



- 12. In describing the material, list the material in order from greatest to least and indic The word "and" means both materials occur in approximately equal amounts (e.g.
- 13. Under the column "Water-bearing Estimated Flow (USgpm)," use "D" for "dry," "V
- 14. If a water-bearing fracture is encountered, the depth of the fracture should be rec fracture can be entered in the column "Water-bearing Estimated Flow (USgpm)."

#### How to Fill Out the Closure Description Table and the Well Closure Information Section

- 15. Each row in the closure description table represents either a depth interval (e.g., from 0 feet to 12 feet) or depth (e.g., 120 feet) in the well.
- 16. For a depth interval, enter the type of backfill or sealant material(s) in the column "Material Description."
- Indicate in "Details of closure" whether casing(s) or screen(s) were pulled or left in place. If casing(s) were left in place, indicate whether it was perforated or ripped.

#### Screen Details

18. "Type" includes riser pipe, K-packer, screen, screen blank, or tail pipe.

#### Well Driller

19. Fill in the name of the driller who constructed the well.

#### Registration Number of Driller Responsible

20. Fill in the registration number on the Qualified Well Driller identification card. If the work was completed by a driller who is not registered as a Qualified Well Driller, the Qualified Well Driller who is directly supervising the work should fill in their registration number on their Qualified Well Driller identification card. The Qualified Well Driller signs the form.

#### **Definitions of Abbreviations**

| aslabove sea level      | ftfeet                | PIDParcel Identifier  | USgpmUS gallons per minute |
|-------------------------|-----------------------|-----------------------|----------------------------|
| bglbelow ground level   | hrshours              | RgRange               | UTMUniversal Transverse    |
| btocbelow top of casing | ininches              | SecSection            | Mercator Grid              |
| DiaDiameter             | NAD 83 North American | SWLstatic water level |                            |
| D.I. District Lot       | Datum (1983)          | Twn Township          |                            |

#### **Return Completed Forms to:**

Ground Water Data Technician Water Stewardship Division, Ministry of Environment PO Box 9362 Stn Prov Govt Victoria BC V8W 9M2 29 June 2022 20144760-004-R-Rev1

**APPENDIX C** 

Water Level Trend Charts





































29 June 2022 20144760-004-R-Rev1

**APPENDIX D** 

**Pumping Test Analysis** 





#### PUMPING TEST WELL 180

Data Set: C:\...\well 180 C J.aqt

Date: 03/21/22 Time: 19:25:29

#### PROJECT INFORMATION

Company: Golder
Client: RDNO
Project: 20144760
Location: Keddleston
Test Well: Well 180
Test Date: 29 Nov 2021

#### AQUIFER DATA

Saturated Thickness: 134.7 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

 Pumping Wells
 Observation Wells

 Well Name
 X (ft)
 Y (ft)
 Well Name
 X (ft)
 Y (ft)

 Well 180
 0
 0
 0
 0
 0

#### **SOLUTION**

Aquifer Model: Confined Solution Method: Cooper-Jacob

 $T = 8.611E-6 \text{ m}^2/\text{sec}$  S = 0.4464



#### PUMPING TEST WELL 180

Data Set: C:\...\well 180 G vert.aqt

Date: 03/21/22 Time: 19:26:53

#### **PROJECT INFORMATION**

Company: Golder Client: RDNO Project: 20144760 Location: Keddleston Test Well: Well 180
Test Date: 29 Nov 2021

#### AQUIFER DATA

Saturated Thickness: 134.7 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| P         | umping Wells |        | Obs        | ervation Wells |        |
|-----------|--------------|--------|------------|----------------|--------|
| Well Name | X (ft)       | Y (ft) | Well Name  | X (ft)         | Y (ft) |
| Well 180  | 0            | 0      | □ Well 180 | 0              | 0      |

## **SOLUTION**

Aquifer Model: Fractured

Solution Method: Gringarten (Vertical)

Kx = 3.461E-7 m/sec

 $= 9.766E-5 \text{ ft}^{-1}$ Ss

Ky/Kx = 1.

Lf = 1. ft



#### WELL TEST ANALYSIS

Data Set: C:\...\well 726 cooper\_jacob\_metric.aqt

Date: 03/21/22 Time: 19:19:39

#### PROJECT INFORMATION

Company: Golder
Client: RDNO
Project: 20144760
Location: Keddleston
Test Well: Well 726
Test Date: 24 Jan 2022

#### AQUIFER DATA

Saturated Thickness: 355.1 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

 Pumping Wells
 Observation Wells

 Well Name
 X (ft)
 Y (ft)
 Well Name
 X (ft)
 Y (ft)

 Well 726
 0
 0
 0
 0
 0

#### SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

 $T = 4.117E-7 \text{ m}^2/\text{sec}$  S = 0.1



#### WELL TEST ANALYSIS

Data Set: C:\...\well 726 G\_vert frac\_metric.aqt

Date: 03/21/22 Time: 19:21:55

#### PROJECT INFORMATION

Company: Golder
Client: RDNO
Project: 20144760
Location: Keddleston
Test Well: Well 726
Test Date: 24 Jan 2022

#### AQUIFER DATA

Saturated Thickness: 355.1 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

 Pumping Wells
 Observation Wells

 Well Name
 X (ft)
 Y (ft)
 Well Name
 X (ft)
 Y (ft)

 Well 726
 0
 0
 0
 0
 0

#### **SOLUTION**

Aquifer Model: Fractured Solution Method: Gringarten (Vertical)

Kx = 2.172E-9 m/sec  $Ss = 0.0002679 \text{ ft}^{-1}$  Lf = 97.41 ft

29 June 2022 20144760-004-R-Rev1

**APPENDIX E** 

**Laboratory Reports** 







#### **CERTIFICATE OF ANALYSIS**

**REPORTED TO** Golder Associates Ltd. (Kelowna)

590 McKay Avenue, Suite 300

Kelowna, BC V1Y 5A8

**ATTENTION** Pana Athanasopoulos

20448804 **PO NUMBER** 

Keddleston Ph. 2 G W Study **PROJECT** 

**PROJECT INFO** [info]

21K2544 **WORK ORDER** 

2021-11-18 16:20 / 3.7°C **RECEIVED / TEMP** 2022-01-20 13:52

12399 **COC NUMBER** 

#### Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry



**REPORTED** 

Ahead of the Curve



You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

more vou It's simple. We figure the enjoy with fun and working our engaged team members; the more likely you are to give us continued opportunities to support you.

regulation Through research, knowledge, and instrumentation, are your analytical centre the technical knowledge you BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at nyipp@caro.ca

Authorized By:

Nicole Yipp Client Service Team Lead



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                               | Result                  | Guideline       | RL       | Units | Analyzed   | Qualifie |
|---------------------------------------|-------------------------|-----------------|----------|-------|------------|----------|
| 12399 - 01 - 120 (21K2544-01)   Matri | ix: Water   Sampled: 20 | 021-11-18 10:30 |          |       |            | F2       |
| Anions                                |                         |                 |          |       |            |          |
| Bromide                               | < 0.10                  | N/A             | 0.10     | mg/L  | 2021-11-20 |          |
| Chloride                              | 62.5                    | AO ≤ 250        | 0.10     | mg/L  | 2021-11-20 |          |
| Fluoride                              | 0.14                    | MAC = 1.5       | 0.10     | mg/L  | 2021-11-20 |          |
| Nitrate (as N)                        | 9.20                    | MAC = 10        | 0.010    | mg/L  | 2021-11-20 |          |
| Nitrite (as N)                        | < 0.010                 | MAC = 1         | 0.010    | mg/L  | 2021-11-20 |          |
| Sulfate                               | 278                     | AO ≤ 500        | 1.0      | mg/L  | 2021-11-20 |          |
| Calculated Parameters                 |                         |                 |          |       |            |          |
| Hardness, Total (as CaCO3)            | 610                     | None Required   | 0.500    | mg/L  | N/A        |          |
| Nitrate+Nitrite (as N)                | 9.20                    | N/A             | 0.0100   | mg/L  | N/A        |          |
| Nitrogen, Total                       | 9.75                    | N/A             | 0.0500   | mg/L  | N/A        |          |
| Dissolved Metals                      |                         |                 |          |       |            |          |
| Aluminum, dissolved                   | < 0.0050                | N/A             | 0.0050   | mg/L  | 2021-11-24 |          |
| Antimony, dissolved                   | < 0.00020               | N/A             | 0.00020  |       | 2021-11-24 |          |
| Arsenic, dissolved                    | < 0.00050               | N/A             | 0.00050  | mg/L  | 2021-11-24 |          |
| Barium, dissolved                     | 0.0097                  | N/A             | 0.0050   | mg/L  | 2021-11-24 |          |
| Beryllium, dissolved                  | < 0.00010               | N/A             | 0.00010  | mg/L  | 2021-11-24 |          |
| Bismuth, dissolved                    | < 0.00010               | N/A             | 0.00010  |       | 2021-11-24 |          |
| Boron, dissolved                      | < 0.0500                | N/A             | 0.0500   |       | 2021-11-24 |          |
| Cadmium, dissolved                    | 0.000038                | N/A             | 0.000010 |       | 2021-11-24 |          |
| Calcium, dissolved                    | 209                     | N/A             |          | mg/L  | 2021-11-24 |          |
| Chromium, dissolved                   | < 0.00050               | N/A             | 0.00050  |       | 2021-11-24 |          |
| Cobalt, dissolved                     | < 0.00010               | N/A             | 0.00010  |       | 2021-11-24 |          |
| Copper, dissolved                     | 0.0210                  | N/A             | 0.00040  |       | 2021-11-24 |          |
| Iron, dissolved                       | < 0.010                 | N/A             | 0.010    |       | 2021-11-24 |          |
| Lead, dissolved                       | 0.00064                 | N/A             | 0.00020  |       | 2021-11-24 |          |
| Lithium, dissolved                    | 0.0151                  | N/A             | 0.00010  |       | 2021-11-24 |          |
| Magnesium, dissolved                  | 21.3                    | N/A             | 0.010    |       | 2021-11-24 |          |
| Manganese, dissolved                  | 0.00046                 | N/A             | 0.00020  |       | 2021-11-24 |          |
| Mercury, dissolved                    | < 0.000010              | N/A             | 0.000010 |       | 2021-11-26 |          |
| Molybdenum, dissolved                 | 0.00053                 | N/A             | 0.00010  |       | 2021-11-24 |          |
| Nickel, dissolved                     | 0.00129                 | N/A             | 0.00040  |       | 2021-11-24 |          |
| Phosphorus, dissolved                 | < 0.050                 | N/A             | 0.050    |       | 2021-11-24 |          |
| Potassium, dissolved                  | 3.10                    | N/A             |          | mg/L  | 2021-11-24 |          |
| Selenium, dissolved                   | 0.00261                 | N/A             | 0.00050  |       | 2021-11-24 |          |
| Silicon, dissolved                    | 12.3                    | N/A             |          | mg/L  | 2021-11-24 |          |
| Silver, dissolved                     | < 0.000050              | N/A             | 0.000050 |       | 2021-11-24 |          |
| Sodium, dissolved                     | 33.3                    | N/A             |          | mg/L  | 2021-11-24 |          |
| Strontium, dissolved                  | 0.614                   | N/A             | 0.0010   |       | 2021-11-24 |          |
| Sulfur, dissolved                     | 88.4                    | N/A             |          | mg/L  | 2021-11-24 |          |
| Tellurium, dissolved                  | < 0.00050               | N/A             | 0.00050  |       | 2021-11-24 |          |
| Thallium, dissolved                   | < 0.000020              | N/A             | 0.000020 |       | 2021-11-24 |          |
| Thorium, dissolved                    | < 0.00010               | N/A             | 0.00010  |       | 2021-11-24 |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                                   | Result            | Guideline                             | RL       | Units      | Analyzed   | Qualifie |
|-------------------------------------------|-------------------|---------------------------------------|----------|------------|------------|----------|
| 12399 - 01 - 120 (21K2544-01)   Matrix: W | ater   Sampled: 2 | 021-11-18 10:30, Co                   | ntinued  |            |            | F2       |
| Dissolved Metals, Continued               |                   |                                       |          |            |            |          |
| Tin, dissolved                            | < 0.00020         | N/A                                   | 0.00020  | mg/L       | 2021-11-24 |          |
| Titanium, dissolved                       | < 0.0050          | N/A                                   | 0.0050   | mg/L       | 2021-11-24 |          |
| Tungsten, dissolved                       | < 0.0010          | N/A                                   | 0.0010   | mg/L       | 2021-11-24 |          |
| Uranium, dissolved                        | 0.0193            | N/A                                   | 0.000020 | mg/L       | 2021-11-24 |          |
| Vanadium, dissolved                       | < 0.0010          | N/A                                   | 0.0010   | mg/L       | 2021-11-24 |          |
| Zinc, dissolved                           | 0.0651            | N/A                                   | 0.0040   | mg/L       | 2021-11-24 |          |
| Zirconium, dissolved                      | < 0.00010         | N/A                                   | 0.00010  | mg/L       | 2021-11-24 |          |
| General Parameters                        |                   |                                       |          |            |            |          |
| Alkalinity, Total (as CaCO3)              | 276               | N/A                                   | 1.0      | mg/L       | 2021-11-21 |          |
| Alkalinity, Phenolphthalein (as CaCO3)    | < 1.0             | N/A                                   |          | mg/L       | 2021-11-21 |          |
| Alkalinity, Bicarbonate (as CaCO3)        | 276               | N/A                                   |          | mg/L       | 2021-11-21 |          |
| Alkalinity, Carbonate (as CaCO3)          | < 1.0             | N/A                                   |          | mg/L       | 2021-11-21 |          |
| Alkalinity, Hydroxide (as CaCO3)          | < 1.0             | N/A                                   |          | mg/L       | 2021-11-21 |          |
| Ammonia, Total (as N)                     | < 0.050           | None Required                         | 0.050    |            | 2021-11-23 |          |
| Conductivity (EC)                         | 1230              | N/A                                   | 2.0      |            | 2021-11-21 |          |
| Nitrogen, Total Kjeldahl                  | 0.553             | N/A                                   | 0.050    | •          | 2021-11-25 |          |
| pH                                        | 7.23              | 7.0-10.5                              |          | pH units   | 2021-11-21 | HT2      |
| Solids, Total Dissolved                   | 806               | AO ≤ 500                              |          | mg/L       | 2021-11-22 |          |
| Solids, Total Suspended                   | < 2.0             | N/A                                   |          | mg/L       | 2021-11-24 |          |
| Microbiological Parameters                |                   |                                       |          |            |            |          |
| Coliforms, Fecal                          | < 1               | N/A                                   |          | MPN/100 mL | 2021-11-19 |          |
| Coliforms, Total                          | 16                | MAC = 0                               |          | MPN/100 mL | 2021-11-19 |          |
| E. coli                                   | < 1               | MAC = 0                               |          | MPN/100 mL | 2021-11-19 |          |
| Miscellaneous Subcontracted Parameters    |                   |                                       |          |            |            |          |
| delta-18-O                                | -16.32            | N/A                                   |          | per mil    | 2022-01-20 |          |
| delta-2-H                                 | -126.6            | N/A                                   |          | per mil    | 2022-01-20 |          |
| Total Metals                              |                   |                                       |          |            |            |          |
| Aluminum, total                           | 0.0443            | OG < 0.1                              | 0.0050   | mg/L       | 2021-11-24 |          |
| Antimony, total                           | < 0.00020         | MAC = 0.006                           | 0.00020  | mg/L       | 2021-11-24 |          |
| Arsenic, total                            | < 0.00050         | MAC = 0.01                            | 0.00050  |            | 2021-11-24 |          |
| Barium, total                             | 0.0106            | MAC = 2                               | 0.0050   |            | 2021-11-24 |          |
| Beryllium, total                          | < 0.00010         | N/A                                   | 0.00010  |            | 2021-11-24 |          |
| Bismuth, total                            | < 0.00010         | N/A                                   | 0.00010  |            | 2021-11-24 |          |
| Boron, total                              | < 0.0500          | MAC = 5                               | 0.0500   |            | 2021-11-24 |          |
| Cadmium, total                            | 0.000044          | MAC = 0.005                           | 0.000010 |            | 2021-11-24 |          |
| Calcium, total                            | 227               | None Required                         |          | mg/L       | 2021-11-24 |          |
| Chromium, total                           | 0.00145           | MAC = 0.05                            | 0.00050  |            | 2021-11-24 |          |
| Cobalt, total                             | 0.00014           | N/A                                   | 0.00010  |            | 2021-11-24 |          |
| Copper, total                             | 0.0100            | MAC = 2                               | 0.00040  |            | 2021-11-24 |          |
|                                           |                   | · · · · · · · · · · · · · · · · · · · |          |            | <u>.</u>   |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                             | Result                  | Guideline           | RL       | Units           | Analyzed   | Qualifie |
|-------------------------------------|-------------------------|---------------------|----------|-----------------|------------|----------|
| 2399 - 01 - 120 (21K2544-01)   Matr | ix: Water   Sampled: 20 | 021-11-18 10:30, Co | ntinued  |                 |            | F2       |
| Fotal Metals, Continued             |                         |                     |          |                 |            |          |
| Lead, total                         | 0.00075                 | MAC = 0.005         | 0.00020  | mg/L            | 2021-11-24 |          |
| Lithium, total                      | 0.0195                  | N/A                 | 0.00010  | mg/L            | 2021-11-24 |          |
| Magnesium, total                    | 22.7                    | None Required       | 0.010    | mg/L            | 2021-11-24 |          |
| Manganese, total                    | 0.00261                 | MAC = 0.12          | 0.00020  | mg/L            | 2021-11-24 |          |
| Mercury, total                      | < 0.000040              | MAC = 0.001         | 0.000040 | mg/L            | 2021-11-24 | CT5      |
| Molybdenum, total                   | 0.00072                 | N/A                 | 0.00010  | mg/L            | 2021-11-24 |          |
| Nickel, total                       | 0.00243                 | N/A                 | 0.00040  |                 | 2021-11-24 |          |
| Phosphorus, total                   | < 0.050                 | N/A                 | 0.050    | mg/L            | 2021-11-24 |          |
| Potassium, total                    | 3.66                    | N/A                 |          | mg/L            | 2021-11-24 |          |
| Selenium, total                     | 0.00222                 | MAC = 0.05          | 0.00050  |                 | 2021-11-24 |          |
| Silicon, total                      | 12.8                    | N/A                 |          | mg/L            | 2021-11-24 |          |
| Silver, total                       | < 0.000050              | None Required       | 0.000050 |                 | 2021-11-24 |          |
| Sodium, total                       | 34.3                    | AO ≤ 200            |          | mg/L            | 2021-11-24 |          |
| Strontium, total                    | 0.641                   | MAC = 7             | 0.0010   |                 | 2021-11-24 |          |
| Sulfur, total                       | 103                     | N/A                 |          | mg/L            | 2021-11-24 |          |
| Tellurium, total                    | < 0.00050               | N/A                 | 0.00050  |                 | 2021-11-24 |          |
| Thallium, total                     | < 0.000020              | N/A                 | 0.000020 |                 | 2021-11-24 |          |
| Thorium, total                      | < 0.00010               | N/A                 | 0.00010  |                 | 2021-11-24 |          |
| Tin, total                          | < 0.00020               | N/A                 | 0.00020  |                 | 2021-11-24 |          |
| Titanium, total                     | < 0.0050                | N/A                 | 0.0050   |                 | 2021-11-24 |          |
| Tungsten, total                     | < 0.0010                | N/A                 | 0.0010   |                 | 2021-11-24 |          |
| Uranium, total                      | 0.0214                  | MAC = 0.02          | 0.000020 |                 | 2021-11-24 |          |
| Vanadium, total                     | 0.0011                  | N/A                 | 0.0010   |                 | 2021-11-24 |          |
| Zinc, total                         | 0.0453                  | AO ≤ 5              | 0.0040   |                 | 2021-11-24 |          |
| Zirconium, total                    | 0.00015                 | N/A                 | 0.00010  |                 | 2021-11-24 |          |
| 2399 - 02 - 000 (21K2544-02)   Matr | ix: Water   Sampled: 20 | 021-11-18 12:00     |          |                 |            | F2       |
| A <i>nions</i><br>Bromide           | < 0.10                  | N/A                 | 0.10     | mg/L            | 2021-11-20 |          |
| Chloride                            | 5.96                    | AO ≤ 250            |          | mg/L            | 2021-11-20 |          |
| Fluoride                            | 1.43                    | MAC = 1.5           |          | mg/L            | 2021-11-20 |          |
| Nitrate (as N)                      | 0.025                   | MAC = 10            | 0.010    |                 | 2021-11-20 |          |
| Nitrite (as N)                      | < 0.010                 | MAC = 1             | 0.010    |                 | 2021-11-20 |          |
| Sulfate                             | 635                     | AO ≤ 500            |          | mg/L            | 2021-11-20 |          |
| Calculated Parameters               |                         | 1.0 – 300           | 1.0      | ·· <del>·</del> |            |          |
| Hardness, Total (as CaCO3)          | 600                     | None Required       | 0.500    | mg/L            | N/A        |          |
| Nitrate+Nitrite (as N)              | 0.0252                  | N/A                 | 0.0100   |                 | N/A        |          |
| Nitrogen, Total                     | < 0.0500                | N/A                 | 0.0500   |                 | N/A        |          |
| Dissolved Metals                    |                         |                     |          |                 |            |          |
| Aluminum, dissolved                 | < 0.0050                | N/A                 | 0.0050   | mg/L            | 2021-11-24 |          |
|                                     |                         |                     | 2.0000   |                 |            |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                                  | Result             | Guideline          | RL       | Units | Analyzed   | Qualifi |
|------------------------------------------|--------------------|--------------------|----------|-------|------------|---------|
| 2399 - 02 - 000 (21K2544-02)   Matrix: W | ater   Sampled: 20 | 21-11-18 12:00, Co | ontinued |       |            | F2      |
| Dissolved Metals, Continued              |                    |                    |          |       |            |         |
| Antimony, dissolved                      | < 0.00020          | N/A                | 0.00020  | mg/L  | 2021-11-24 |         |
| Arsenic, dissolved                       | < 0.00050          | N/A                | 0.00050  | mg/L  | 2021-11-24 |         |
| Barium, dissolved                        | 0.0073             | N/A                | 0.0050   | mg/L  | 2021-11-24 |         |
| Beryllium, dissolved                     | < 0.00010          | N/A                | 0.00010  | mg/L  | 2021-11-24 |         |
| Bismuth, dissolved                       | < 0.00010          | N/A                | 0.00010  | mg/L  | 2021-11-24 |         |
| Boron, dissolved                         | < 0.0500           | N/A                | 0.0500   | mg/L  | 2021-11-24 |         |
| Cadmium, dissolved                       | 0.000019           | N/A                | 0.000010 | mg/L  | 2021-11-24 |         |
| Calcium, dissolved                       | 105                | N/A                | 0.20     | mg/L  | 2021-11-24 |         |
| Chromium, dissolved                      | < 0.00050          | N/A                | 0.00050  | mg/L  | 2021-11-24 |         |
| Cobalt, dissolved                        | 0.00043            | N/A                | 0.00010  |       | 2021-11-24 |         |
| Copper, dissolved                        | 0.00363            | N/A                | 0.00040  |       | 2021-11-24 |         |
| Iron, dissolved                          | 0.016              | N/A                | 0.010    |       | 2021-11-24 |         |
| Lead, dissolved                          | < 0.00020          | N/A                | 0.00020  |       | 2021-11-24 |         |
| Lithium, dissolved                       | 0.423              | N/A                | 0.00010  |       | 2021-11-24 |         |
| Magnesium, dissolved                     | 81.9               | N/A                | 0.010    |       | 2021-11-24 |         |
| Manganese, dissolved                     | 0.0305             | N/A                | 0.00020  |       | 2021-11-24 |         |
| Mercury, dissolved                       | < 0.000010         | N/A                | 0.000010 |       | 2021-11-26 |         |
| Molybdenum, dissolved                    | 0.00239            | N/A                | 0.00010  |       | 2021-11-24 |         |
| Nickel, dissolved                        | 0.00495            | N/A                | 0.00040  |       | 2021-11-24 |         |
| Phosphorus, dissolved                    | < 0.050            | N/A                | 0.050    |       | 2021-11-24 |         |
| Potassium, dissolved                     | 11.0               | N/A                |          | mg/L  | 2021-11-24 |         |
| Selenium, dissolved                      | < 0.00050          | N/A                | 0.00050  |       | 2021-11-24 |         |
| Silicon, dissolved                       | 16.8               | N/A                |          | mg/L  | 2021-11-24 |         |
| Silver, dissolved                        | < 0.000050         | N/A                | 0.000050 |       | 2021-11-24 |         |
| Sodium, dissolved                        | 192                | N/A                |          | mg/L  | 2021-11-24 |         |
| Strontium, dissolved                     | 2.80               | N/A                | 0.0010   |       | 2021-11-24 |         |
| Sulfur, dissolved                        | 189                | N/A                |          | mg/L  | 2021-11-24 |         |
| Tellurium, dissolved                     | < 0.00050          | N/A                | 0.00050  |       | 2021-11-24 |         |
| Thallium, dissolved                      | 0.000023           | N/A                | 0.000020 |       | 2021-11-24 |         |
| Thorium, dissolved                       | < 0.00010          | N/A                | 0.00010  |       | 2021-11-24 |         |
| Tin, dissolved                           | 0.0104             | N/A                | 0.00020  |       | 2021-11-24 |         |
| Titanium, dissolved                      | < 0.0050           | N/A                | 0.0050   |       | 2021-11-24 |         |
| Tungsten, dissolved                      | < 0.0010           | N/A                | 0.0010   |       | 2021-11-24 |         |
| Uranium, dissolved                       | 0.00119            | N/A                | 0.000020 |       | 2021-11-24 |         |
| Vanadium, dissolved                      | < 0.0010           | N/A                | 0.0010   |       | 2021-11-24 |         |
| Zinc, dissolved                          | 0.816              | N/A                | 0.0040   |       | 2021-11-24 |         |
| Zirconium, dissolved                     | < 0.00010          | N/A                | 0.00010  |       | 2021-11-24 |         |
| General Parameters                       | 3.00010            | 1 1// 1            | 3.00010  | 9, =  | 20211127   |         |
| Alkalinity, Total (as CaCO3)             | 439                | N/A                | 1.0      | mg/L  | 2021-11-21 |         |
| Alkalinity, Phenolphthalein (as CaCO3)   | < 1.0              | N/A                |          | mg/L  | 2021-11-21 |         |
| Alkalinity, Bicarbonate (as CaCO3)       | 439                | N/A                |          | mg/L  | 2021-11-21 |         |
| Alkalinity, Carbonate (as CaCO3)         | < 1.0              | N/A                |          | mg/L  | 2021-11-21 |         |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                                | Result               | Guideline           | RL       | Units      | Analyzed   | Qualifie |
|----------------------------------------|----------------------|---------------------|----------|------------|------------|----------|
| 12399 - 02 - 000 (21K2544-02)   Matrix | : Water   Sampled: 2 | 021-11-18 12:00, Co | ntinued  |            |            | F2       |
| General Parameters, Continued          |                      |                     |          |            |            |          |
| Alkalinity, Hydroxide (as CaCO3)       | < 1.0                | N/A                 | 1.0      | mg/L       | 2021-11-21 |          |
| Ammonia, Total (as N)                  | < 0.050              | None Required       | 0.050    |            | 2021-11-23 |          |
| Conductivity (EC)                      | 1860                 | N/A                 |          | μS/cm      | 2021-11-21 |          |
| Nitrogen, Total Kjeldahl               | < 0.050              | N/A                 | 0.050    | -          | 2021-11-25 |          |
| pH                                     | 7.58                 | 7.0-10.5            | 0.10     | pH units   | 2021-11-21 | HT2      |
| Solids, Total Dissolved                | 1210                 | AO ≤ 500            | 15       | mg/L       | 2021-11-22 |          |
| Solids, Total Suspended                | < 2.0                | N/A                 | 2.0      | mg/L       | 2021-11-24 |          |
| Microbiological Parameters             |                      |                     |          |            |            |          |
| Coliforms, Fecal                       | < 1                  | N/A                 |          | MPN/100 mL | 2021-11-19 |          |
| Coliforms, Total                       | 5                    | MAC = 0             |          | MPN/100 mL | 2021-11-19 |          |
| E. coli                                | < 1                  | MAC = 0             |          | MPN/100 mL | 2021-11-19 |          |
| Miscellaneous Subcontracted Parameters | 3                    |                     |          |            |            |          |
| delta-18-O                             | -18.77               | N/A                 |          | per mil    | 2022-01-20 |          |
| delta-2-H                              | -144.6               | N/A                 |          | per mil    | 2022-01-20 |          |
| Total Metals                           |                      |                     |          |            |            |          |
| Aluminum, total                        | < 0.0050             | OG < 0.1            | 0.0050   | mg/L       | 2021-11-24 |          |
| Antimony, total                        | < 0.00020            | MAC = 0.006         | 0.00020  |            | 2021-11-24 |          |
| Arsenic, total                         | < 0.00050            | MAC = 0.01          | 0.00050  |            | 2021-11-24 |          |
| Barium, total                          | 0.0086               | MAC = 2             | 0.0050   | mg/L       | 2021-11-24 |          |
| Beryllium, total                       | < 0.00010            | N/A                 | 0.00010  | mg/L       | 2021-11-24 |          |
| Bismuth, total                         | < 0.00010            | N/A                 | 0.00010  | mg/L       | 2021-11-24 |          |
| Boron, total                           | < 0.0500             | MAC = 5             | 0.0500   | mg/L       | 2021-11-24 |          |
| Cadmium, total                         | 0.000048             | MAC = 0.005         | 0.000010 |            | 2021-11-24 |          |
| Calcium, total                         | 127                  | None Required       | 0.20     | mg/L       | 2021-11-24 |          |
| Chromium, total                        | 0.00055              | MAC = 0.05          | 0.00050  | mg/L       | 2021-11-24 |          |
| Cobalt, total                          | 0.00052              | N/A                 | 0.00010  | mg/L       | 2021-11-24 |          |
| Copper, total                          | 0.00441              | MAC = 2             | 0.00040  | mg/L       | 2021-11-24 |          |
| Iron, total                            | 0.172                | AO ≤ 0.3            | 0.010    | mg/L       | 2021-11-24 |          |
| Lead, total                            | 0.00035              | MAC = 0.005         | 0.00020  | mg/L       | 2021-11-24 |          |
| Lithium, total                         | 0.585                | N/A                 | 0.00010  | mg/L       | 2021-11-24 |          |
| Magnesium, total                       | 90.5                 | None Required       | 0.010    |            | 2021-11-24 |          |
| Manganese, total                       | 0.0376               | MAC = 0.12          | 0.00020  |            | 2021-11-24 |          |
| Mercury, total                         | < 0.000040           | MAC = 0.001         | 0.000040 |            | 2021-11-24 | CT5      |
| Molybdenum, total                      | 0.00295              | N/A                 | 0.00010  | mg/L       | 2021-11-24 |          |
| Nickel, total                          | 0.00658              | N/A                 | 0.00040  | mg/L       | 2021-11-24 |          |
| Phosphorus, total                      | < 0.050              | N/A                 | 0.050    | mg/L       | 2021-11-24 |          |
| Potassium, total                       | 13.6                 | N/A                 | 0.10     | mg/L       | 2021-11-24 |          |
| Selenium, total                        | < 0.00050            | MAC = 0.05          | 0.00050  | mg/L       | 2021-11-24 |          |
| Silicon, total                         | 19.4                 | N/A                 | 1.0      | mg/L       | 2021-11-24 |          |
| Silver, total                          | < 0.000050           | None Required       | 0.000050 |            | 2021-11-24 |          |
| Sodium, total                          | 213                  | AO ≤ 200            |          | mg/L       | 2021-11-24 |          |



REPORTED TOGolder Associates Ltd. (Kelowna)WORK ORDER21K2544PROJECTKeddleston Ph. 2 G W StudyREPORTED2022-01-20 13:52

| Analyte                              | Result                  | Guideline              | RL               | Units | Analyzed                 | Qualifie |
|--------------------------------------|-------------------------|------------------------|------------------|-------|--------------------------|----------|
| 12399 - 02 - 000 (21K2544-02)   Matr | ix: Water   Sampled: 20 | )21-11-18 12:00, Co    | ntinued          |       |                          | F2       |
| Total Metals, Continued              |                         |                        |                  |       |                          |          |
| Strontium, total                     | 3.33                    | MAC = 7                | 0.0010           | mg/L  | 2021-11-24               |          |
| Sulfur, total                        | 240                     | N/A                    | 3.0              | mg/L  | 2021-11-24               |          |
| Tellurium, total                     | < 0.00050               | N/A                    | 0.00050          | mg/L  | 2021-11-24               |          |
| Thallium, total                      | 0.000033                | N/A                    | 0.000020         | mg/L  | 2021-11-24               |          |
| Thorium, total                       | < 0.00010               | N/A                    | 0.00010          | mg/L  | 2021-11-24               |          |
| Tin, total                           | 0.00332                 | N/A                    | 0.00020          | mg/L  | 2021-11-24               |          |
| Titanium, total                      | < 0.0050                | N/A                    | 0.0050           | mg/L  | 2021-11-24               |          |
| Tungsten, total                      | < 0.0010                | N/A                    | 0.0010           | mg/L  | 2021-11-24               |          |
| Uranium, total                       | 0.00143                 | MAC = 0.02             | 0.000020         | mg/L  | 2021-11-24               |          |
| Vanadium, total                      | < 0.0010                | N/A                    | 0.0010           | mg/L  | 2021-11-24               |          |
| Zinc, total                          | 0.955                   | AO ≤ 5                 | 0.0040           | mg/L  | 2021-11-24               |          |
| Zirconium, total                     | < 0.00010               | N/A                    | 0.00010          | mg/L  | 2021-11-24               |          |
| 2399 - 03 - 021 (21K2544-03)   Matr  | ix: Water   Sampled: 20 | <b>)21-11-18 12:45</b> |                  |       |                          | F2       |
| Bromide                              | < 0.10                  | N/A                    | 0.10             | mg/L  | 2021-11-20               |          |
| Chloride                             | 11.3                    | AO ≤ 250               |                  | mg/L  | 2021-11-20               |          |
| Fluoride                             | 0.23                    | MAC = 1.5              |                  | mg/L  | 2021-11-20               |          |
| Nitrate (as N)                       | 0.082                   | MAC = 10               | 0.010            |       | 2021-11-20               |          |
| Nitrite (as N)                       | < 0.010                 | MAC = 1                | 0.010            |       | 2021-11-20               |          |
| Sulfate                              | 518                     | AO ≤ 500               |                  | mg/L  | 2021-11-20               |          |
| Calculated Parameters                |                         |                        |                  |       |                          |          |
| Hardness, Total (as CaCO3)           | 659                     | None Required          | 0.500            | mg/L  | N/A                      |          |
| Nitrate+Nitrite (as N)               | 0.0824                  | N/A                    | 0.0100           | mg/L  | N/A                      |          |
| Nitrogen, Total                      | 0.239                   | N/A                    | 0.0500           | mg/L  | N/A                      |          |
| Dissolved Metals                     |                         |                        |                  |       |                          |          |
| Aluminum, dissolved                  | 0.0054                  | N/A                    | 0.0050           | mg/L  | 2021-11-24               |          |
| Antimony, dissolved                  | < 0.00020               | N/A                    | 0.00020          | mg/L  | 2021-11-24               |          |
| Arsenic, dissolved                   | 0.00076                 | N/A                    | 0.00050          | mg/L  | 2021-11-24               |          |
| Barium, dissolved                    | 0.0251                  | N/A                    | 0.0050           | mg/L  | 2021-11-24               |          |
| Beryllium, dissolved                 | < 0.00010               | N/A                    | 0.00010          |       | 2021-11-24               |          |
| Bismuth, dissolved                   | < 0.00010               | N/A                    | 0.00010          | mg/L  | 2021-11-24               |          |
| Boron, dissolved                     | < 0.0500                | N/A                    | 0.0500           | mg/L  | 2021-11-24               |          |
| Cadmium, dissolved                   | < 0.000010              | N/A                    | 0.000010         | mg/L  | 2021-11-24               |          |
| Calcium, dissolved                   | 166                     | N/A                    | 0.20             | mg/L  | 2021-11-24               |          |
| Chromium, dissolved                  | < 0.00050               | N/A                    | 0.00050          |       | 2021-11-24               |          |
| Cabalt disastrad                     | < 0.00010               | N/A                    | 0.00010          |       | 2021-11-24               |          |
| Cobalt, dissolved                    | V 0.000 TO              |                        |                  |       |                          |          |
| Copper, dissolved                    | 0.00180                 | N/A                    | 0.00040          | mg/L  | 2021-11-24               |          |
| <u> </u>                             |                         | N/A<br>N/A             | 0.00040<br>0.010 |       | 2021-11-24<br>2021-11-24 |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                                   | Result             | Guideline           | RL       | Units      | Analyzed   | Qualifi |
|-------------------------------------------|--------------------|---------------------|----------|------------|------------|---------|
| 12399 - 03 - 021 (21K2544-03)   Matrix: W | ater   Sampled: 20 | )21-11-18 12:45, Co | ntinued  |            |            | F2      |
| Dissolved Metals, Continued               |                    |                     |          |            |            |         |
| Lithium, dissolved                        | 0.0171             | N/A                 | 0.00010  | mg/L       | 2021-11-24 |         |
| Magnesium, dissolved                      | 59.4               | N/A                 | 0.010    | mg/L       | 2021-11-24 |         |
| Manganese, dissolved                      | 0.0145             | N/A                 | 0.00020  | mg/L       | 2021-11-24 |         |
| Mercury, dissolved                        | < 0.000010         | N/A                 | 0.000010 | mg/L       | 2021-11-26 |         |
| Molybdenum, dissolved                     | 0.00921            | N/A                 | 0.00010  | mg/L       | 2021-11-24 |         |
| Nickel, dissolved                         | < 0.00040          | N/A                 | 0.00040  | mg/L       | 2021-11-24 |         |
| Phosphorus, dissolved                     | < 0.050            | N/A                 | 0.050    | mg/L       | 2021-11-24 |         |
| Potassium, dissolved                      | 5.63               | N/A                 | 0.10     | mg/L       | 2021-11-24 |         |
| Selenium, dissolved                       | < 0.00050          | N/A                 | 0.00050  | mg/L       | 2021-11-24 |         |
| Silicon, dissolved                        | 9.2                | N/A                 | 1.0      | mg/L       | 2021-11-24 |         |
| Silver, dissolved                         | < 0.000050         | N/A                 | 0.000050 | mg/L       | 2021-11-24 |         |
| Sodium, dissolved                         | 53.8               | N/A                 | 0.10     | mg/L       | 2021-11-24 |         |
| Strontium, dissolved                      | 2.17               | N/A                 | 0.0010   | mg/L       | 2021-11-24 |         |
| Sulfur, dissolved                         | 161                | N/A                 | 3.0      | mg/L       | 2021-11-24 |         |
| Tellurium, dissolved                      | < 0.00050          | N/A                 | 0.00050  | mg/L       | 2021-11-24 |         |
| Thallium, dissolved                       | < 0.000020         | N/A                 | 0.000020 | mg/L       | 2021-11-24 |         |
| Thorium, dissolved                        | < 0.00010          | N/A                 | 0.00010  | mg/L       | 2021-11-24 |         |
| Tin, dissolved                            | < 0.00020          | N/A                 | 0.00020  | mg/L       | 2021-11-24 |         |
| Titanium, dissolved                       | < 0.0050           | N/A                 | 0.0050   | mg/L       | 2021-11-24 |         |
| Tungsten, dissolved                       | < 0.0010           | N/A                 | 0.0010   | mg/L       | 2021-11-24 |         |
| Uranium, dissolved                        | 0.0139             | N/A                 | 0.000020 | mg/L       | 2021-11-24 |         |
| Vanadium, dissolved                       | < 0.0010           | N/A                 | 0.0010   | mg/L       | 2021-11-24 |         |
| Zinc, dissolved                           | < 0.0040           | N/A                 | 0.0040   | mg/L       | 2021-11-24 |         |
| Zirconium, dissolved                      | < 0.00010          | N/A                 | 0.00010  | mg/L       | 2021-11-24 |         |
| General Parameters                        |                    |                     |          |            |            |         |
| Alkalinity, Total (as CaCO3)              | 259                | N/A                 | 1.0      | mg/L       | 2021-11-21 |         |
| Alkalinity, Phenolphthalein (as CaCO3)    | < 1.0              | N/A                 | 1.0      | mg/L       | 2021-11-21 |         |
| Alkalinity, Bicarbonate (as CaCO3)        | 259                | N/A                 | 1.0      | mg/L       | 2021-11-21 |         |
| Alkalinity, Carbonate (as CaCO3)          | < 1.0              | N/A                 | 1.0      | mg/L       | 2021-11-21 |         |
| Alkalinity, Hydroxide (as CaCO3)          | < 1.0              | N/A                 | 1.0      | mg/L       | 2021-11-21 |         |
| Ammonia, Total (as N)                     | < 0.050            | None Required       | 0.050    | mg/L       | 2021-11-23 |         |
| Conductivity (EC)                         | 1320               | N/A                 | 2.0      | μS/cm      | 2021-11-21 |         |
| Nitrogen, Total Kjeldahl                  | 0.157              | N/A                 | 0.050    | mg/L       | 2021-11-25 |         |
| pH                                        | 7.67               | 7.0-10.5            | 0.10     | pH units   | 2021-11-21 | HT2     |
| Solids, Total Dissolved                   | 965                | AO ≤ 500            | 15       | mg/L       | 2021-11-22 |         |
| Solids, Total Suspended                   | < 2.0              | N/A                 | 2.0      | mg/L       | 2021-11-24 |         |
| licrobiological Parameters                |                    |                     |          |            |            |         |
| Coliforms, Fecal                          | < 1                | N/A                 |          | MPN/100 mL | 2021-11-19 |         |
| Coliforms, Total                          | 276                | MAC = 0             |          | MPN/100 mL | 2021-11-19 |         |
| E. coli                                   | < 1                | MAC = 0             |          | MPN/100 mL | 2021-11-19 |         |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                             | Result                      | Guideline           | RL       | Units   | Analyzed   | Qualifie |
|-------------------------------------|-----------------------------|---------------------|----------|---------|------------|----------|
| <br>  12399 - 03 - 021 (21K2544-03) | Matrix: Water   Sampled: 20 | 021-11-18 12:45, Co | ntinued  |         |            | F2       |
| Miscellaneous Subcontracted Pa      | rameters, Continued         |                     |          |         |            |          |
| delta-18-O                          | -18.1                       | N/A                 |          | per mil | 2022-01-20 |          |
| delta-2-H                           | -139.1                      | N/A                 |          | per mil | 2022-01-20 |          |
| Fotal Metals                        |                             |                     |          |         |            |          |
| Aluminum, total                     | < 0.0050                    | OG < 0.1            | 0.0050   | mg/L    | 2021-11-24 |          |
| Antimony, total                     | < 0.00020                   | MAC = 0.006         | 0.00020  | mg/L    | 2021-11-24 |          |
| Arsenic, total                      | 0.00076                     | MAC = 0.01          | 0.00050  | mg/L    | 2021-11-24 |          |
| Barium, total                       | 0.0265                      | MAC = 2             | 0.0050   | mg/L    | 2021-11-24 |          |
| Beryllium, total                    | < 0.00010                   | N/A                 | 0.00010  | mg/L    | 2021-11-24 |          |
| Bismuth, total                      | < 0.00010                   | N/A                 | 0.00010  | mg/L    | 2021-11-24 |          |
| Boron, total                        | < 0.0500                    | MAC = 5             | 0.0500   |         | 2021-11-24 |          |
| Cadmium, total                      | < 0.000010                  | MAC = 0.005         | 0.000010 | mg/L    | 2021-11-24 |          |
| Calcium, total                      | 185                         | None Required       |          | mg/L    | 2021-11-24 |          |
| Chromium, total                     | < 0.00050                   | MAC = 0.05          | 0.00050  |         | 2021-11-24 |          |
| Cobalt, total                       | < 0.00010                   | N/A                 | 0.00010  |         | 2021-11-24 |          |
| Copper, total                       | 0.00121                     | MAC = 2             | 0.00040  |         | 2021-11-24 |          |
| Iron, total                         | < 0.010                     | AO ≤ 0.3            | 0.010    |         | 2021-11-24 |          |
| Lead, total                         | < 0.00020                   | MAC = 0.005         | 0.00020  |         | 2021-11-24 |          |
| Lithium, total                      | 0.0218                      | N/A                 | 0.00010  | mg/L    | 2021-11-24 |          |
| Magnesium, total                    | 61.2                        | None Required       | 0.010    |         | 2021-11-24 |          |
| Manganese, total                    | 0.0162                      | MAC = 0.12          | 0.00020  | mg/L    | 2021-11-24 |          |
| Mercury, total                      | < 0.00040                   | MAC = 0.001         | 0.000040 |         | 2021-11-24 | CT5      |
| Molybdenum, total                   | 0.00966                     | N/A                 | 0.00010  | -       | 2021-11-24 |          |
| Nickel, total                       | 0.00042                     | N/A                 | 0.00040  |         | 2021-11-24 |          |
| Phosphorus, total                   | < 0.050                     | N/A                 | 0.050    |         | 2021-11-24 |          |
| Potassium, total                    | 6.39                        | N/A                 |          | mg/L    | 2021-11-24 |          |
| Selenium, total                     | < 0.00050                   | MAC = 0.05          | 0.00050  |         | 2021-11-24 |          |
| Silicon, total                      | 9.2                         | N/A                 |          | mg/L    | 2021-11-24 |          |
| Silver, total                       | < 0.000050                  | None Required       | 0.000050 |         | 2021-11-24 |          |
| Sodium, total                       | 54.9                        | AO ≤ 200            |          | mg/L    | 2021-11-24 |          |
| Strontium, total                    | 2.20                        | MAC = 7             | 0.0010   |         | 2021-11-24 |          |
| Sulfur, total                       | 187                         | N/A                 |          | mg/L    | 2021-11-24 |          |
| Tellurium, total                    | < 0.00050                   | N/A                 | 0.00050  |         | 2021-11-24 |          |
| Thallium, total                     | < 0.000020                  | N/A                 | 0.000020 |         | 2021-11-24 |          |
| Thorium, total                      | < 0.00010                   | N/A                 | 0.00010  |         | 2021-11-24 |          |
| Tin, total                          | < 0.00020                   | N/A                 | 0.00020  |         | 2021-11-24 |          |
| Titanium, total                     | < 0.0050                    | N/A                 | 0.0050   |         | 2021-11-24 |          |
| Tungsten, total                     | < 0.0010                    | N/A                 | 0.0010   |         | 2021-11-24 |          |
| Uranium, total                      | 0.0150                      | MAC = 0.02          | 0.000020 |         | 2021-11-24 |          |
| Vanadium, total                     | < 0.0010                    | N/A                 | 0.0010   |         | 2021-11-24 |          |
| Zinc, total                         | < 0.0040                    | AO ≤ 5              | 0.0040   |         | 2021-11-24 |          |
| Zirconium, total                    | < 0.00010                   | N/A                 | 0.00010  |         | 2021-11-24 |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                              | Result                  | Guideline       | RL       | Units | Analyzed   | Qualifie |
|--------------------------------------|-------------------------|-----------------|----------|-------|------------|----------|
| 12399 - 04 - 412 (21K2544-04)   Matr | ix: Water   Sampled: 20 | )21-11-18 13:50 |          |       |            | F2       |
| Anions                               |                         |                 |          |       |            |          |
| Bromide                              | < 0.10                  | N/A             | 0.10     | mg/L  | 2021-11-20 |          |
| Chloride                             | 1.09                    | AO ≤ 250        | 0.10     | mg/L  | 2021-11-20 |          |
| Fluoride                             | 0.12                    | MAC = 1.5       | 0.10     | mg/L  | 2021-11-20 |          |
| Nitrate (as N)                       | < 0.010                 | MAC = 10        | 0.010    | mg/L  | 2021-11-20 |          |
| Nitrite (as N)                       | < 0.010                 | MAC = 1         | 0.010    | mg/L  | 2021-11-20 |          |
| Sulfate                              | 72.3                    | AO ≤ 500        | 1.0      | mg/L  | 2021-11-20 |          |
| Calculated Parameters                |                         |                 |          |       |            |          |
| Hardness, Total (as CaCO3)           | 385                     | None Required   | 0.500    | mg/L  | N/A        |          |
| Nitrate+Nitrite (as N)               | < 0.0100                | N/A             | 0.0100   | mg/L  | N/A        |          |
| Nitrogen, Total                      | < 0.0500                | N/A             | 0.0500   | mg/L  | N/A        |          |
| Dissolved Metals                     |                         |                 |          |       |            |          |
| Aluminum, dissolved                  | < 0.0050                | N/A             | 0.0050   | mg/L  | 2021-11-24 |          |
| Antimony, dissolved                  | < 0.00020               | N/A             | 0.00020  | mg/L  | 2021-11-24 |          |
| Arsenic, dissolved                   | < 0.00050               | N/A             | 0.00050  | mg/L  | 2021-11-24 |          |
| Barium, dissolved                    | 0.0265                  | N/A             | 0.0050   | mg/L  | 2021-11-24 |          |
| Beryllium, dissolved                 | < 0.00010               | N/A             | 0.00010  | mg/L  | 2021-11-24 |          |
| Bismuth, dissolved                   | < 0.00010               | N/A             | 0.00010  | mg/L  | 2021-11-24 |          |
| Boron, dissolved                     | < 0.0500                | N/A             | 0.0500   | mg/L  | 2021-11-24 |          |
| Cadmium, dissolved                   | 0.000022                | N/A             | 0.000010 | mg/L  | 2021-11-24 |          |
| Calcium, dissolved                   | 97.8                    | N/A             | 0.20     | mg/L  | 2021-11-24 |          |
| Chromium, dissolved                  | < 0.00050               | N/A             | 0.00050  | mg/L  | 2021-11-24 |          |
| Cobalt, dissolved                    | 0.00013                 | N/A             | 0.00010  | mg/L  | 2021-11-24 |          |
| Copper, dissolved                    | 0.00266                 | N/A             | 0.00040  | mg/L  | 2021-11-24 |          |
| Iron, dissolved                      | 0.017                   | N/A             | 0.010    | mg/L  | 2021-11-24 |          |
| Lead, dissolved                      | < 0.00020               | N/A             | 0.00020  | mg/L  | 2021-11-24 |          |
| Lithium, dissolved                   | 0.0185                  | N/A             | 0.00010  | mg/L  | 2021-11-24 |          |
| Magnesium, dissolved                 | 34.2                    | N/A             | 0.010    | mg/L  | 2021-11-24 |          |
| Manganese, dissolved                 | 0.0500                  | N/A             | 0.00020  | mg/L  | 2021-11-24 |          |
| Mercury, dissolved                   | < 0.000010              | N/A             | 0.000010 | mg/L  | 2021-11-26 |          |
| Molybdenum, dissolved                | 0.00429                 | N/A             | 0.00010  | mg/L  | 2021-11-24 |          |
| Nickel, dissolved                    | 0.00095                 | N/A             | 0.00040  | mg/L  | 2021-11-24 |          |
| Phosphorus, dissolved                | < 0.050                 | N/A             | 0.050    | mg/L  | 2021-11-24 |          |
| Potassium, dissolved                 | 3.59                    | N/A             | 0.10     | mg/L  | 2021-11-24 |          |
| Selenium, dissolved                  | < 0.00050               | N/A             | 0.00050  | mg/L  | 2021-11-24 |          |
| Silicon, dissolved                   | 9.5                     | N/A             | 1.0      | mg/L  | 2021-11-24 |          |
| Silver, dissolved                    | < 0.000050              | N/A             | 0.000050 | mg/L  | 2021-11-24 |          |
| Sodium, dissolved                    | 8.48                    | N/A             | 0.10     | mg/L  | 2021-11-24 |          |
| Strontium, dissolved                 | 0.888                   | N/A             | 0.0010   | mg/L  | 2021-11-24 |          |
| Sulfur, dissolved                    | 22.1                    | N/A             | 3.0      | mg/L  | 2021-11-24 |          |
| Tellurium, dissolved                 | < 0.00050               | N/A             | 0.00050  | mg/L  | 2021-11-24 |          |
| Thallium, dissolved                  | < 0.000020              | N/A             | 0.000020 | mg/L  | 2021-11-24 |          |
| Thorium, dissolved                   | < 0.00010               | N/A             | 0.00010  | mg/L  | 2021-11-24 |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                                   | Result             | Guideline           | RL       | Units      | Analyzed   | Qualifie |
|-------------------------------------------|--------------------|---------------------|----------|------------|------------|----------|
| 12399 - 04 - 412 (21K2544-04)   Matrix: W | ater   Sampled: 20 | 021-11-18 13:50, Co | ntinued  |            |            | F2       |
| Dissolved Metals, Continued               |                    |                     |          |            |            |          |
| Tin, dissolved                            | < 0.00020          | N/A                 | 0.00020  | mg/L       | 2021-11-24 |          |
| Titanium, dissolved                       | < 0.0050           | N/A                 | 0.0050   | mg/L       | 2021-11-24 |          |
| Tungsten, dissolved                       | < 0.0010           | N/A                 | 0.0010   | mg/L       | 2021-11-24 |          |
| Uranium, dissolved                        | 0.00498            | N/A                 | 0.000020 | mg/L       | 2021-11-24 |          |
| Vanadium, dissolved                       | < 0.0010           | N/A                 | 0.0010   | mg/L       | 2021-11-24 |          |
| Zinc, dissolved                           | 0.0351             | N/A                 | 0.0040   | mg/L       | 2021-11-24 |          |
| Zirconium, dissolved                      | < 0.00010          | N/A                 | 0.00010  | mg/L       | 2021-11-24 |          |
| General Parameters                        |                    |                     |          |            |            |          |
| Alkalinity, Total (as CaCO3)              | 352                | N/A                 | 1.0      | mg/L       | 2021-11-21 |          |
| Alkalinity, Phenolphthalein (as CaCO3)    | < 1.0              | N/A                 |          | mg/L       | 2021-11-21 |          |
| Alkalinity, Bicarbonate (as CaCO3)        | 352                | N/A                 |          | mg/L       | 2021-11-21 |          |
| Alkalinity, Carbonate (as CaCO3)          | < 1.0              | N/A                 |          | mg/L       | 2021-11-21 |          |
| Alkalinity, Hydroxide (as CaCO3)          | < 1.0              | N/A                 |          | mg/L       | 2021-11-21 |          |
| Ammonia, Total (as N)                     | < 0.050            | None Required       | 0.050    |            | 2021-11-23 |          |
| Conductivity (EC)                         | 710                | N/A                 |          | μS/cm      | 2021-11-21 |          |
| Nitrogen, Total Kjeldahl                  | < 0.050            | N/A                 | 0.050    | -          | 2021-11-25 |          |
| Н                                         | 7.41               | 7.0-10.5            |          | pH units   | 2021-11-21 | HT2      |
| Solids, Total Dissolved                   | 438                | AO ≤ 500            |          | mg/L       | 2021-11-23 |          |
| Solids, Total Suspended                   | < 2.0              | N/A                 |          | mg/L       | 2021-11-24 |          |
| Microbiological Parameters                |                    |                     |          |            |            |          |
| Coliforms, Fecal                          | < 1                | N/A                 |          | MPN/100 mL | 2021-11-19 |          |
| Coliforms, Total                          | 43                 | MAC = 0             |          | MPN/100 mL | 2021-11-19 |          |
| E. coli                                   | < 1                | MAC = 0             |          | MPN/100 mL | 2021-11-19 |          |
| Miscellaneous Subcontracted Parameters    |                    |                     |          |            |            |          |
| delta-18-O                                | -18.15             | N/A                 |          | per mil    | 2022-01-20 |          |
| delta-2-H                                 | -137.6             | N/A                 |          | per mil    | 2022-01-20 |          |
| Total Metals                              |                    |                     |          |            |            |          |
| Aluminum, total                           | < 0.0050           | OG < 0.1            | 0.0050   | mg/L       | 2021-11-24 |          |
| Antimony, total                           | < 0.00020          | MAC = 0.006         | 0.00020  |            | 2021-11-24 |          |
| Arsenic, total                            | < 0.00050          | MAC = 0.01          | 0.00050  |            | 2021-11-24 |          |
| Barium, total                             | 0.0290             | MAC = 2             | 0.0050   |            | 2021-11-24 |          |
| Beryllium, total                          | < 0.00010          | N/A                 | 0.00010  |            | 2021-11-24 |          |
| Bismuth, total                            | < 0.00010          | N/A                 | 0.00010  |            | 2021-11-24 |          |
| Boron, total                              | < 0.0500           | MAC = 5             | 0.0500   |            | 2021-11-24 |          |
| Cadmium, total                            | 0.000023           | MAC = 0.005         | 0.000010 |            | 2021-11-24 |          |
| Calcium, total                            | 112                | None Required       |          | mg/L       | 2021-11-24 |          |
| Chromium, total                           | < 0.00050          | MAC = 0.05          | 0.00050  |            | 2021-11-24 |          |
| Cobalt, total                             | 0.00015            | N/A                 | 0.00010  |            | 2021-11-24 |          |
| Copper, total                             | 0.00243            | MAC = 2             | 0.00040  |            | 2021-11-24 |          |
|                                           | 3.002-70           |                     | 5.55510  | ···· ɔ· =  |            |          |



Nitrogen, Total

**Dissolved Metals**Aluminum, dissolved

REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED 21K2544 2022-01-20 13:52

| Analyte                             | Result                   | Guideline           | RL       | Units | Analyzed   | Qualifi |
|-------------------------------------|--------------------------|---------------------|----------|-------|------------|---------|
| 2399 - 04 - 412 (21K2544-04)   Mati | rix: Water   Sampled: 20 | 021-11-18 13:50, Co | ntinued  |       |            | F2      |
| Fotal Metals, Continued             |                          |                     |          |       |            |         |
| Lead, total                         | < 0.00020                | MAC = 0.005         | 0.00020  | mg/L  | 2021-11-24 |         |
| Lithium, total                      | 0.0229                   | N/A                 | 0.00010  | mg/L  | 2021-11-24 |         |
| Magnesium, total                    | 35.5                     | None Required       | 0.010    | mg/L  | 2021-11-24 |         |
| Manganese, total                    | 0.0591                   | MAC = 0.12          | 0.00020  | mg/L  | 2021-11-24 |         |
| Mercury, total                      | 0.000101                 | MAC = 0.001         | 0.000040 | mg/L  | 2021-11-24 | CT5     |
| Molybdenum, total                   | 0.00473                  | N/A                 | 0.00010  | mg/L  | 2021-11-24 |         |
| Nickel, total                       | 0.00141                  | N/A                 | 0.00040  | mg/L  | 2021-11-24 |         |
| Phosphorus, total                   | < 0.050                  | N/A                 | 0.050    | mg/L  | 2021-11-24 |         |
| Potassium, total                    | 4.20                     | N/A                 | 0.10     | mg/L  | 2021-11-24 |         |
| Selenium, total                     | < 0.00050                | MAC = 0.05          | 0.00050  | mg/L  | 2021-11-24 |         |
| Silicon, total                      | 10.5                     | N/A                 | 1.0      | mg/L  | 2021-11-24 |         |
| Silver, total                       | < 0.000050               | None Required       | 0.000050 | mg/L  | 2021-11-24 |         |
| Sodium, total                       | 9.10                     | AO ≤ 200            | 0.10     | mg/L  | 2021-11-24 |         |
| Strontium, total                    | 0.971                    | MAC = 7             | 0.0010   | mg/L  | 2021-11-24 |         |
| Sulfur, total                       | 27.2                     | N/A                 | 3.0      | mg/L  | 2021-11-24 |         |
| Tellurium, total                    | < 0.00050                | N/A                 | 0.00050  | mg/L  | 2021-11-24 |         |
| Thallium, total                     | < 0.000020               | N/A                 | 0.000020 | mg/L  | 2021-11-24 |         |
| Thorium, total                      | < 0.00010                | N/A                 | 0.00010  | mg/L  | 2021-11-24 |         |
| Tin, total                          | < 0.00020                | N/A                 | 0.00020  | mg/L  | 2021-11-24 |         |
| Titanium, total                     | < 0.0050                 | N/A                 | 0.0050   | mg/L  | 2021-11-24 |         |
| Tungsten, total                     | < 0.0010                 | N/A                 | 0.0010   | mg/L  | 2021-11-24 |         |
| Uranium, total                      | 0.00584                  | MAC = 0.02          | 0.000020 | mg/L  | 2021-11-24 |         |
| Vanadium, total                     | < 0.0010                 | N/A                 | 0.0010   | mg/L  | 2021-11-24 |         |
| Zinc, total                         | 0.0279                   | AO ≤ 5              | 0.0040   | mg/L  | 2021-11-24 |         |
| Zirconium, total                    | < 0.00010                | N/A                 | 0.00010  | mg/L  | 2021-11-24 |         |
| 2399 - 05 - WEWELL3 (21K2544-05     | 5)   Matrix: Water   Sam | pled: 2021-11-18 14 | :45      |       |            | F2      |
| Anions                              |                          |                     |          |       |            |         |
| Bromide                             | < 0.10                   | N/A                 | 0.10     | mg/L  | 2021-11-20 |         |
| Chloride                            | 15.0                     | AO ≤ 250            | 0.10     | mg/L  | 2021-11-20 |         |
| Fluoride                            | 7.50                     | MAC = 1.5           | 0.10     | mg/L  | 2021-11-20 |         |
| Nitrate (as N)                      | < 0.010                  | MAC = 10            | 0.010    | mg/L  | 2021-11-20 |         |
| Nitrite (as N)                      | < 0.010                  | MAC = 1             | 0.010    | mg/L  | 2021-11-20 |         |
| Sulfate                             | 176                      | AO ≤ 500            | 1.0      | mg/L  | 2021-11-20 |         |
| Calculated Parameters               |                          |                     |          |       |            |         |
| Hardness, Total (as CaCO3)          | 105                      | None Required       | 0.500    | mg/L  | N/A        |         |
| Nitrate+Nitrite (as N)              | < 0.0100                 | N/A                 | 0.0100   | mg/L  | N/A        |         |
|                                     |                          |                     |          |       |            |         |

N/A

2021-11-24

N/A

N/A

0.0500 mg/L

0.0050 mg/L

0.0590

< 0.0050



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                                | Result              | Guideline         | RL             | Units | Analyzed   | Qualific |
|----------------------------------------|---------------------|-------------------|----------------|-------|------------|----------|
| 2399 - 05 - WEWELL3 (21K2544-05)   M   | atrix: Water   Samp | led: 2021-11-18 1 | 4:45, Continue | ed    |            | F2       |
| Dissolved Metals, Continued            |                     |                   |                |       |            |          |
| Antimony, dissolved                    | < 0.00020           | N/A               | 0.00020        | mg/L  | 2021-11-24 |          |
| Arsenic, dissolved                     | < 0.00050           | N/A               | 0.00050        | mg/L  | 2021-11-24 |          |
| Barium, dissolved                      | 0.0199              | N/A               | 0.0050         | mg/L  | 2021-11-24 |          |
| Beryllium, dissolved                   | < 0.00010           | N/A               | 0.00010        | mg/L  | 2021-11-24 |          |
| Bismuth, dissolved                     | < 0.00010           | N/A               | 0.00010        | mg/L  | 2021-11-24 |          |
| Boron, dissolved                       | < 0.0500            | N/A               | 0.0500         | mg/L  | 2021-11-24 |          |
| Cadmium, dissolved                     | 0.000012            | N/A               | 0.000010       | mg/L  | 2021-11-24 |          |
| Calcium, dissolved                     | 25.9                | N/A               | 0.20           | mg/L  | 2021-11-24 |          |
| Chromium, dissolved                    | < 0.00050           | N/A               | 0.00050        |       | 2021-11-24 |          |
| Cobalt, dissolved                      | 0.00016             | N/A               | 0.00010        |       | 2021-11-24 |          |
| Copper, dissolved                      | 0.00292             | N/A               | 0.00040        |       | 2021-11-24 |          |
| Iron, dissolved                        | < 0.010             | N/A               | 0.010          |       | 2021-11-24 |          |
| Lead, dissolved                        | < 0.00020           | N/A               | 0.00020        |       | 2021-11-24 |          |
| Lithium, dissolved                     | 0.0339              | N/A               | 0.00010        |       | 2021-11-24 |          |
| Magnesium, dissolved                   | 9.76                | N/A               | 0.010          |       | 2021-11-24 |          |
| Manganese, dissolved                   | 0.0108              | N/A               | 0.00020        |       | 2021-11-24 |          |
| Mercury, dissolved                     | < 0.000010          | N/A               | 0.000010       |       | 2021-11-26 |          |
| Molybdenum, dissolved                  | 0.00896             | N/A               | 0.00010        |       | 2021-11-24 |          |
| Nickel, dissolved                      | 0.00116             | N/A               | 0.00040        |       | 2021-11-24 |          |
| Phosphorus, dissolved                  | < 0.050             | N/A               | 0.050          |       | 2021-11-24 |          |
| Potassium, dissolved                   | 1.95                | N/A               | 0.10           |       | 2021-11-24 |          |
| Selenium, dissolved                    | 0.00094             | N/A               | 0.00050        |       | 2021-11-24 |          |
| Silicon, dissolved                     | 6.4                 | N/A               |                | mg/L  | 2021-11-24 |          |
| Silver, dissolved                      | < 0.000050          | N/A               | 0.000050       |       | 2021-11-24 |          |
| Sodium, dissolved                      | 213                 | N/A               |                | mg/L  | 2021-11-24 |          |
| Strontium, dissolved                   | 0.521               | N/A               | 0.0010         |       | 2021-11-24 |          |
| Sulfur, dissolved                      | 56.3                | N/A               |                | mg/L  | 2021-11-24 |          |
| Tellurium, dissolved                   | < 0.00050           | N/A               | 0.00050        |       | 2021-11-24 |          |
| Thallium, dissolved                    | < 0.000020          | N/A               | 0.000020       |       | 2021-11-24 |          |
| Thorium, dissolved                     | < 0.00010           | N/A               | 0.00010        |       | 2021-11-24 |          |
| Tin, dissolved                         | < 0.00020           | N/A               | 0.00020        |       | 2021-11-24 |          |
| Titanium, dissolved                    | < 0.0050            | N/A               | 0.0050         |       | 2021-11-24 |          |
| Tungsten, dissolved                    | < 0.0010            | N/A               | 0.0010         |       | 2021-11-24 |          |
| Uranium, dissolved                     | 0.00540             | N/A               | 0.000020       |       | 2021-11-24 |          |
| Vanadium, dissolved                    | < 0.0010            | N/A               | 0.0010         |       | 2021-11-24 |          |
| Zinc, dissolved                        | < 0.0040            | N/A               | 0.0040         |       | 2021-11-24 |          |
| Zirconium, dissolved                   | < 0.00010           | N/A               | 0.00010        |       | 2021-11-24 |          |
| eneral Parameters                      | 2.220.0             |                   | 2.200.0        |       |            |          |
| Alkalinity, Total (as CaCO3)           | 353                 | N/A               | 1.0            | mg/L  | 2021-11-21 |          |
| Alkalinity, Phenolphthalein (as CaCO3) | < 1.0               | N/A               |                | mg/L  | 2021-11-21 |          |
| Alkalinity, Bicarbonate (as CaCO3)     | 353                 | N/A               |                | mg/L  | 2021-11-21 |          |
| Alkalinity, Carbonate (as CaCO3)       | < 1.0               | N/A               |                | mg/L  | 2021-11-21 |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

| Analyte                                | Result              | Guideline           | RL           | Units      | Analyzed   | Qualifie |
|----------------------------------------|---------------------|---------------------|--------------|------------|------------|----------|
| 12399 - 05 - WEWELL3 (21K2544-05)      | Matrix: Water   Sam | pled: 2021-11-18 14 | :45, Continu | ed         |            | F2       |
| General Parameters, Continued          |                     |                     |              |            |            |          |
| Alkalinity, Hydroxide (as CaCO3)       | < 1.0               | N/A                 | 1.0          | mg/L       | 2021-11-21 |          |
| Ammonia, Total (as N)                  | 0.057               | None Required       | 0.050        |            | 2021-11-23 |          |
| Conductivity (EC)                      | 1040                | N/A                 | 2.0          | μS/cm      | 2021-11-21 |          |
| Nitrogen, Total Kjeldahl               | 0.059               | N/A                 | 0.050        | mg/L       | 2021-11-25 |          |
| рН                                     | 8.16                | 7.0-10.5            | 0.10         | pH units   | 2021-11-21 | HT2      |
| Solids, Total Dissolved                | 679                 | AO ≤ 500            | 15           | mg/L       | 2021-11-22 |          |
| Solids, Total Suspended                | 151                 | N/A                 | 2.0          | mg/L       | 2021-11-24 |          |
| Microbiological Parameters             |                     |                     |              |            |            |          |
| Coliforms, Fecal                       | < 1                 | N/A                 |              | MPN/100 mL | 2021-11-19 |          |
| Coliforms, Total                       | < 1                 | MAC = 0             |              | MPN/100 mL | 2021-11-19 |          |
| E. coli                                | < 1                 | MAC = 0             |              | MPN/100 mL | 2021-11-19 |          |
| Miscellaneous Subcontracted Parameters |                     |                     |              |            |            |          |
| delta-18-O                             | -19.04              | N/A                 |              | per mil    | 2022-01-20 |          |
| delta-2-H                              | -145.7              | N/A                 |              | per mil    | 2022-01-20 |          |
| Fotal Metals                           |                     |                     |              |            |            |          |
| Aluminum, total                        | 4.18                | OG < 0.1            | 0.0050       | mg/L       | 2021-11-24 |          |
| Antimony, total                        | 0.00026             | MAC = 0.006         | 0.00020      | mg/L       | 2021-11-24 |          |
| Arsenic, total                         | 0.00054             | MAC = 0.01          | 0.00050      | mg/L       | 2021-11-24 |          |
| Barium, total                          | 0.0613              | MAC = 2             | 0.0050       | mg/L       | 2021-11-24 |          |
| Beryllium, total                       | 0.00037             | N/A                 | 0.00010      | mg/L       | 2021-11-24 |          |
| Bismuth, total                         | < 0.00010           | N/A                 | 0.00010      | mg/L       | 2021-11-24 |          |
| Boron, total                           | < 0.0500            | MAC = 5             | 0.0500       | mg/L       | 2021-11-24 |          |
| Cadmium, total                         | 0.000194            | MAC = 0.005         | 0.000010     | mg/L       | 2021-11-24 |          |
| Calcium, total                         | 32.0                | None Required       | 0.20         | mg/L       | 2021-11-24 |          |
| Chromium, total                        | 0.0108              | MAC = 0.05          | 0.00050      | mg/L       | 2021-11-24 |          |
| Cobalt, total                          | 0.00291             | N/A                 | 0.00010      | mg/L       | 2021-11-24 |          |
| Copper, total                          | 0.0228              | MAC = 2             | 0.00040      | mg/L       | 2021-11-24 |          |
| Iron, total                            | 16.7                | AO ≤ 0.3            | 0.010        | mg/L       | 2021-11-24 |          |
| Lead, total                            | 0.00552             | MAC = 0.005         | 0.00020      | mg/L       | 2021-11-24 |          |
| Lithium, total                         | 0.0452              | N/A                 | 0.00010      | mg/L       | 2021-11-24 |          |
| Magnesium, total                       | 12.0                | None Required       | 0.010        | mg/L       | 2021-11-24 |          |
| Manganese, total                       | 0.191               | MAC = 0.12          | 0.00020      | mg/L       | 2021-11-24 |          |
| Mercury, total                         | < 0.000040          | MAC = 0.001         | 0.000040     | mg/L       | 2021-11-24 | CT5      |
| Molybdenum, total                      | 0.0110              | N/A                 | 0.00010      | mg/L       | 2021-11-24 |          |
| Nickel, total                          | 0.00626             | N/A                 | 0.00040      | mg/L       | 2021-11-24 |          |
| Phosphorus, total                      | 0.095               | N/A                 | 0.050        | mg/L       | 2021-11-24 |          |
| Potassium, total                       | 4.54                | N/A                 | 0.10         | mg/L       | 2021-11-24 |          |
| Selenium, total                        | 0.00174             | MAC = 0.05          | 0.00050      | mg/L       | 2021-11-24 |          |
| Silicon, total                         | 15.9                | N/A                 |              | mg/L       | 2021-11-24 |          |
| Silver, total                          | < 0.000050          | None Required       | 0.000050     |            | 2021-11-24 |          |
| Sodium, total                          | 223                 | AO ≤ 200            |              | mg/L       | 2021-11-24 |          |



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED

21K2544 2022-01-20 13:52

| Analyte                        | Result                     | Guideline          | RL            | Units | Analyzed   | Qualifie |
|--------------------------------|----------------------------|--------------------|---------------|-------|------------|----------|
| 12399 - 05 - WEWELL3 (21K2544- | 05)   Matrix: Water   Samp | led: 2021-11-18 14 | l:45, Continu | ed    |            | F2       |
| Total Metals, Continued        |                            |                    |               |       |            |          |
| Strontium, total               | 0.600                      | MAC = 7            | 0.0010        | mg/L  | 2021-11-24 |          |
| Sulfur, total                  | 68.5                       | N/A                | 3.0           | mg/L  | 2021-11-24 |          |
| Tellurium, total               | < 0.00050                  | N/A                | 0.00050       | mg/L  | 2021-11-24 |          |
| Thallium, total                | 0.000085                   | N/A                | 0.000020      | mg/L  | 2021-11-24 |          |
| Thorium, total                 | 0.00111                    | N/A                | 0.00010       | mg/L  | 2021-11-24 |          |
| Tin, total                     | 0.00038                    | N/A                | 0.00020       | mg/L  | 2021-11-24 |          |
| Titanium, total                | 0.0546                     | N/A                | 0.0050        | mg/L  | 2021-11-24 |          |
| Tungsten, total                | 0.0014                     | N/A                | 0.0010        | mg/L  | 2021-11-24 |          |
| Uranium, total                 | 0.00700                    | MAC = 0.02         | 0.000020      | mg/L  | 2021-11-24 |          |
| Vanadium, total                | 0.0096                     | N/A                | 0.0010        | mg/L  | 2021-11-24 |          |
| Zinc, total                    | 0.0361                     | AO ≤ 5             | 0.0040        | mg/L  | 2021-11-24 |          |
| Zirconium, total               | 0.00452                    | N/A                | 0.00010       | mg/L  | 2021-11-24 |          |

#### Sample Qualifiers:

CT5 This sample has been incorrectly preserved for Mercury analysis

F2 The sample was not field-preserved with HNO3 and was therefore preserved in the laboratory and held for at least 16 hours prior to analysis for total metals.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.



#### **APPENDIX 1: SUPPORTING INFORMATION**

REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER

21K2544

**REPORTED** 2022-01-20 13:52

| Analysis Description               | Method Ref.               | Technique                                                                            | Accredited | Location |
|------------------------------------|---------------------------|--------------------------------------------------------------------------------------|------------|----------|
| 2H and 18O Isotope Ratios in Water | Stable Isotopes           | CRDS                                                                                 |            | Sublet   |
| Alkalinity in Water                | SM 2320 B* (2017)         | Titration with H2SO4                                                                 | ✓          | Kelowna  |
| Ammonia, Total in Water            | SM 4500-NH3 G*<br>(2017)  | Automated Colorimetry (Phenate)                                                      | ✓          | Kelowna  |
| Anions in Water                    | SM 4110 B (2017)          | Ion Chromatography                                                                   | ✓          | Kelowna  |
| Coliforms, Fecal in Water          | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Coliforms, Total in Water          | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Conductivity in Water              | SM 2510 B (2017)          | Conductivity Meter                                                                   | ✓          | Kelowna  |
| Dissolved Metals in Water          | EPA 200.8 / EPA 6020B     | 0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)           | ✓          | Richmond |
| E. coli in Water                   | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Hardness in Water                  | SM 2340 B (2017)          | Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]                                       | ✓          | N/A      |
| Mercury, dissolved in Water        | EPA 245.7*                | BrCl2 Oxidation / Cold Vapor Atomic Fluorescence<br>Spectrometry (CVAFS)             | ✓          | Richmond |
| Nitrogen, Total Kjeldahl in Water  | SM 4500-Norg D*<br>(2017) | Block Digestion and Flow Injection Analysis                                          | ✓          | Kelowna  |
| pH in Water                        | SM 4500-H+ B (2017)       | Electrometry                                                                         | ✓          | Kelowna  |
| Solids, Total Dissolved in Water   | SM 2540 C* (2017)         | Gravimetry (Dried at 103-105C)                                                       | ✓          | Kelowna  |
| Solids, Total Suspended in Water   | SM 2540 D* (2017)         | Gravimetry (Dried at 103-105C)                                                       | ✓          | Kelowna  |
| Total Metals in Water              | EPA 200.2 / EPA 6020B     | HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) | ✓          | Richmond |

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

#### Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

MPN/100 mL Most Probable Number per 100 millilitres
OG Operational Guideline (treated water)

per mil Parts per thousand

pH units pH < 7 = acidic, ph > 7 = basic $\mu$ S/cm Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

#### **Guidelines Referenced in this Report:**

Guidelines for Canadian Drinking Water Quality (Health Canada, June 2019)

Note: In some cases, the values displayed on the report represent the lowest guideline and are to be verified by the end user



#### **APPENDIX 1: SUPPORTING INFORMATION**

REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER
REPORTED

21K2544 2022-01-20 13:52

#### **General Comments:**

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:nyipp@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.



REPORTED TO Golder Associates Ltd. (Kelowna)
PROJECT Keddleston Ph. 2 G W Study

WORK ORDER REPORTED 21K2544 2022-01-20 13:52

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte               | Result | RL Units  | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
|-----------------------|--------|-----------|----------------|------------------|-------------|--------------|-------|--------------|-----------|
| Anions, Batch B1K2285 |        |           |                |                  |             |              |       |              |           |
| Blank (B1K2285-BLK1)  |        |           | Prepared       | I: 2021-11-2     | 20, Analyze | d: 2021-1    | 1-20  |              |           |
| Bromide               | < 0.10 | 0.10 mg/L |                |                  |             |              |       |              |           |
| Chloride              | < 0.10 | 0.10 mg/L |                |                  |             |              |       |              |           |
| Fluoride              | < 0.10 | 0.10 mg/L |                |                  |             |              |       |              |           |
| Sulfate               | < 1.0  | 1.0 mg/L  |                |                  |             |              |       |              |           |
| LCS (B1K2285-BS1)     |        |           | Prepared       | I: 2021-11-2     | 20, Analyze | d: 2021-1    | 1-20  |              |           |
| Bromide               | 4.00   | 0.10 mg/L | 4.00           |                  | 100         | 85-115       |       |              |           |
| Chloride              | 16.0   | 0.10 mg/L | 16.0           |                  | 100         | 90-110       |       |              |           |
| Fluoride              | 3.91   | 0.10 mg/L | 4.00           |                  | 98          | 88-108       |       |              |           |
| Sulfate               | 16.1   | 1.0 mg/L  | 16.0           |                  | 101         | 90-110       |       |              |           |

#### Anions, Batch B1K2304

| Blank (B1K2304-BLK1) |         |            | Prepared: 202 | 1-11-20, Analyze | ed: 2021-11-20 | 0 |  |
|----------------------|---------|------------|---------------|------------------|----------------|---|--|
| Nitrate (as N)       | < 0.010 | 0.010 mg/L |               |                  |                |   |  |
| Nitrite (as N)       | < 0.010 | 0.010 mg/L |               |                  |                |   |  |
| LCS (B1K2304-BS1)    |         |            | Prepared: 202 | 1-11-20, Analyze | ed: 2021-11-20 | 0 |  |
| Nitrate (as N)       | 4.01    | 0.010 mg/L | 4.00          | 100              | 90-110         |   |  |
| Nitrite (as N)       | 2.01    | 0.010 mg/L | 2.00          | 101              | 85-115         |   |  |

#### Dissolved Metals, Batch B1K2590

| Blank (B1K2590-BLK1)          |            |               | Prepared: 2021-11-24, Analyzed: 2021-11-24 |
|-------------------------------|------------|---------------|--------------------------------------------|
| Aluminum, dissolved           | < 0.0050   | 0.0050 mg/L   |                                            |
| Antimony, dissolved           | < 0.00020  | 0.00020 mg/L  |                                            |
| Arsenic, dissolved            | < 0.00050  | 0.00050 mg/L  |                                            |
| Barium, dissolved             | < 0.0050   | 0.0050 mg/L   |                                            |
| Beryllium, dissolved          | < 0.00010  | 0.00010 mg/L  |                                            |
| Bismuth, dissolved            | < 0.00010  | 0.00010 mg/L  |                                            |
| Boron, dissolved              | < 0.0500   | 0.0500 mg/L   |                                            |
| Cadmium, dissolved            | < 0.000010 | 0.000010 mg/L |                                            |
| Calcium, dissolved, dissolved | < 0.20     | 0.20 mg/L     |                                            |
| Chromium, dissolved           | < 0.00050  | 0.00050 mg/L  |                                            |
| Cobalt, dissolved             | < 0.00010  | 0.00010 mg/L  |                                            |



Molybdenum, dissolved

Phosphorus, dissolved Potassium, dissolved

Selenium, dissolved

Silicon, dissolved

Silver, dissolved

Sodium, dissolved

Sulfur, dissolved

Strontium, dissolved

Tellurium, dissolved

Nickel, dissolved

## **APPENDIX 2: QUALITY CONTROL RESULTS**

|                                 | ciates Ltd. (Kelowna<br>Ph. 2 G W Study | a)            |                |                  | WORK<br>REPOR |              |       | 13:52        |          |
|---------------------------------|-----------------------------------------|---------------|----------------|------------------|---------------|--------------|-------|--------------|----------|
| Analyte                         | Result                                  | RL Units      | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit | % RPD | RPD<br>Limit | Qualifie |
| Dissolved Metals, Batch B1K2590 | , Continued                             |               |                |                  |               |              |       |              |          |
| Blank (B1K2590-BLK1), Continued | t                                       |               | Prepared       | d: 2021-11-2     | 4, Analyze    | d: 2021-     | 11-24 |              |          |
| Copper, dissolved               | < 0.00040                               | 0.00040 mg/L  |                |                  |               |              |       |              |          |
| Iron, dissolved                 | < 0.010                                 | 0.010 mg/L    |                |                  |               |              |       |              |          |
| Lead, dissolved                 | < 0.00020                               | 0.00020 mg/L  |                |                  |               |              |       |              |          |
| Lithium, dissolved              | < 0.00010                               | 0.00010 mg/L  |                |                  |               |              |       |              |          |
| Magnesium, dissolved, dissolved | < 0.010                                 | 0.010 mg/L    |                |                  |               |              |       |              |          |
| Manganese, dissolved            | < 0.00020                               | 0.00020 mg/L  |                |                  |               |              |       |              |          |
| Molybdenum, dissolved           | < 0.00010                               | 0.00010 mg/L  |                |                  |               |              |       |              |          |
| Nickel, dissolved               | < 0.00040                               | 0.00040 mg/L  |                |                  |               |              |       |              |          |
| Phosphorus, dissolved           | < 0.050                                 | 0.050 mg/L    |                |                  |               |              |       |              |          |
| Potassium, dissolved            | < 0.10                                  | 0.10 mg/L     |                |                  |               |              |       |              |          |
| Selenium, dissolved             | < 0.00050                               | 0.00050 mg/L  |                |                  |               |              |       |              |          |
| Silicon, dissolved              | < 1.0                                   | 1.0 mg/L      |                |                  |               |              |       |              |          |
| Silver, dissolved               | < 0.000050                              | 0.000050 mg/L |                |                  |               |              |       |              |          |
| Sodium, dissolved               | < 0.10                                  | 0.10 mg/L     |                |                  |               |              |       |              |          |
| Strontium, dissolved            | < 0.0010                                | 0.0010 mg/L   |                |                  |               |              |       |              |          |
| Sulfur, dissolved               | < 3.0                                   | 3.0 mg/L      |                |                  |               |              |       |              |          |
| Tellurium, dissolved            | < 0.00050                               | 0.00050 mg/L  |                |                  |               |              |       |              |          |
|                                 | < 0.00030                               |               |                |                  |               |              |       |              |          |
| Thallium, dissolved             |                                         | 0.000020 mg/L |                |                  |               |              |       |              |          |
| Thorium, dissolved              | < 0.00010                               | 0.00010 mg/L  |                |                  |               |              |       |              |          |
| Tin, dissolved                  | < 0.00020                               | 0.00020 mg/L  |                |                  |               |              |       |              |          |
| Titanium, dissolved             | < 0.0050                                | 0.0050 mg/L   |                |                  |               |              |       |              |          |
| Tungsten, dissolved             | < 0.0010                                | 0.0010 mg/L   |                |                  |               |              |       |              |          |
| Uranium, dissolved              | < 0.000020                              | 0.000020 mg/L |                |                  |               |              |       |              |          |
| Vanadium, dissolved             | < 0.0010                                | 0.0010 mg/L   |                |                  |               |              |       |              |          |
| Zinc, dissolved                 | < 0.0040                                | 0.0040 mg/L   |                |                  |               |              |       |              |          |
| Zirconium, dissolved            | < 0.00010                               | 0.00010 mg/L  |                |                  |               |              |       |              |          |
| LCS (B1K2590-BS1)               |                                         |               | Prepared       | d: 2021-11-2     | 4, Analyze    | d: 2021-     | 11-24 |              |          |
| Aluminum, dissolved             | 0.0198                                  | 0.0050 mg/L   | 0.0200         |                  | 99            | 80-120       |       |              |          |
| Antimony, dissolved             | 0.0173                                  | 0.00020 mg/L  | 0.0200         |                  | 86            | 80-120       |       |              |          |
| Arsenic, dissolved              | 0.0162                                  | 0.00050 mg/L  | 0.0200         |                  | 81            | 80-120       |       |              |          |
| Barium, dissolved               | 0.0175                                  | 0.0050 mg/L   | 0.0200         |                  | 88            | 80-120       |       |              |          |
| Beryllium, dissolved            | 0.0164                                  | 0.00010 mg/L  | 0.0200         |                  | 82            | 80-120       |       |              |          |
| Bismuth, dissolved              | 0.0184                                  | 0.00010 mg/L  | 0.0200         |                  | 92            | 80-120       |       |              |          |
| Boron, dissolved                | < 0.0500                                | 0.0500 mg/L   | 0.0200         |                  | 90            | 80-120       |       |              |          |
| Cadmium, dissolved              | 0.0162                                  | 0.000010 mg/L | 0.0200         |                  | 81            | 80-120       |       |              |          |
| Calcium, dissolved, dissolved   | 1.75                                    | 0.20 mg/L     | 2.00           |                  | 87            | 80-120       |       |              |          |
| Chromium, dissolved             | 0.0178                                  | 0.00050 mg/L  | 0.0200         |                  | 89            | 80-120       |       |              |          |
| Cobalt, dissolved               | 0.0177                                  | 0.00010 mg/L  | 0.0200         |                  | 89            | 80-120       |       |              |          |
| Copper, dissolved               | 0.0188                                  | 0.00040 mg/L  | 0.0200         |                  | 94            | 80-120       |       |              |          |
| Iron, dissolved                 | 1.83                                    | 0.010 mg/L    | 2.00           |                  | 91            | 80-120       |       |              |          |
| Lead, dissolved                 | 0.0191                                  | 0.00020 mg/L  | 0.0200         |                  | 95            | 80-120       |       |              |          |
| Lithium, dissolved              | 0.0181                                  | 0.00010 mg/L  | 0.0200         |                  | 91            | 80-120       |       |              |          |
| Magnesium, dissolved, dissolved | 1.88                                    | 0.010 mg/L    | 2.00           |                  | 94            | 80-120       |       |              |          |
| Manganese, dissolved            | 0.0174                                  | 0.00020 mg/L  | 0.0200         |                  | 87            | 80-120       |       |              |          |
|                                 | 0.0174                                  | 0.000±0 mg/L  | 5.0200         |                  |               | 33 120       |       |              |          |

0.0200

0.0200

2.00

2.00

0.0200

2.00

0.0200

2.00

0.0200

5.00

0.0200

92

88

83

87

87

99

88

88

84

87

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

0.00010 mg/L

0.00040 mg/L

0.00050 mg/L

0.000050 mg/L

0.050 mg/L

0.10 mg/L

1.0 mg/L

0.10 mg/L

3.0 mg/L

0.0010 mg/L

0.00050 mg/L

0.0183

0.0177

0.0174

0.0176

0.0168

0.0179

1.66

1.75

2.0

1.76

4.3



| REPORTED TO<br>PROJECT                   | Golder Associates Ltd<br>Keddleston Ph. 2 G V | •                    | )                  |         |                |                      | WORK<br>REPOR | ORDER<br>TED | 21K2<br>2022 | 2544<br>-01-20 | 13:52     |
|------------------------------------------|-----------------------------------------------|----------------------|--------------------|---------|----------------|----------------------|---------------|--------------|--------------|----------------|-----------|
| Analyte                                  |                                               | Result               | RL                 | Units   | Spike<br>Level | Source<br>Result     | % REC         | REC<br>Limit | % RPD        | RPD<br>Limit   | Qualifier |
| Dissolved Metals, I                      | Batch B1K2590, Continu                        | ıed                  |                    |         |                |                      |               |              |              |                |           |
| LCS (B1K2590-BS1                         | l), Continued                                 |                      |                    |         | Prepared       | : 2021-11-2          | 4, Analyze    | d: 2021-1    | 1-24         |                |           |
| Thallium, dissolved                      | <i></i>                                       | 0.0178               | 0.000020           | ma/L    | 0.0200         |                      | 89            | 80-120       |              |                |           |
| Thorium, dissolved                       |                                               | 0.0183               | 0.00010            |         | 0.0200         |                      | 92            | 80-120       |              |                |           |
| Tin, dissolved                           |                                               | 0.0188               | 0.00020            |         | 0.0200         |                      | 94            | 80-120       |              |                |           |
| Titanium, dissolved                      |                                               | 0.0198               | 0.0050             | mg/L    | 0.0200         |                      | 99            | 80-120       |              |                |           |
| Tungsten, dissolved                      |                                               | 0.0193               | 0.0010             | mg/L    | 0.0200         |                      | 96            | 80-120       |              |                |           |
| Uranium, dissolved                       |                                               | 0.0188               | 0.000020           |         | 0.0200         |                      | 94            | 80-120       |              |                |           |
| Vanadium, dissolved                      |                                               | 0.0176               | 0.0010             |         | 0.0200         |                      | 88            | 80-120       |              |                |           |
| Zinc, dissolved                          |                                               | 0.0185               | 0.0040             |         | 0.0200         |                      | 92            | 80-120       |              |                |           |
| Zirconium, dissolved                     |                                               | 0.0189               | 0.00010            | mg/L    | 0.0200         |                      | 95            | 80-120       |              |                |           |
| Duplicate (B1K259                        | 0-DUP1)                                       | So                   | urce: 21K2         | 2544-02 | Prepared       | : 2021-11-2          | 4, Analyze    | d: 2021-1    | 1-24         |                |           |
| Aluminum, dissolved                      |                                               | < 0.0050             | 0.0050             | mg/L    |                | < 0.0050             |               |              |              | 20             |           |
| Antimony, dissolved                      |                                               | < 0.00020            | 0.00020            | mg/L    |                | < 0.00020            |               |              |              | 20             |           |
| Arsenic, dissolved                       |                                               | < 0.00050            | 0.00050            |         |                | < 0.00050            |               |              |              | 20             |           |
| Barium, dissolved                        |                                               | 0.0076               | 0.0050             |         |                | 0.0073               |               |              |              | 20             |           |
| Beryllium, dissolved                     |                                               | < 0.00010            | 0.00010            |         |                | < 0.00010            |               |              |              | 20             |           |
| Bismuth, dissolved                       |                                               | < 0.00010            | 0.00010            |         |                | < 0.00010            |               |              |              | 20             |           |
| Boron, dissolved                         |                                               | < 0.0500             | 0.0500             |         |                | < 0.0500             |               |              |              | 20             |           |
| Cadmium, dissolved                       |                                               | 0.000019             | 0.000010           |         |                | 0.000019             |               |              |              | 20             |           |
| Calcium, dissolved, di                   | ssoived                                       | 111                  |                    | mg/L    |                | 105                  |               |              | 5            | 20             |           |
| Chromium, dissolved Cobalt, dissolved    |                                               | < 0.00050<br>0.00042 | 0.00050<br>0.00010 |         |                | < 0.00050<br>0.00043 |               |              |              | 20             |           |
| Copper, dissolved                        |                                               | 0.00042              | 0.00010            |         |                | 0.00363              |               |              | 1            | 20             |           |
| Iron, dissolved                          |                                               | 0.00307              |                    | mg/L    |                | 0.016                |               |              |              | 20             |           |
| Lead, dissolved                          |                                               | < 0.00020            | 0.00020            |         |                | < 0.00020            |               |              |              | 20             |           |
| Lithium, dissolved                       |                                               | 0.439                | 0.00010            |         |                | 0.423                |               |              | 4            | 20             |           |
| Magnesium, dissolved                     | d, dissolved                                  | 83.7                 |                    | mg/L    |                | 81.9                 |               |              | 2            | 20             |           |
| Manganese, dissolved                     |                                               | 0.0313               | 0.00020            |         |                | 0.0305               |               |              | 3            | 20             |           |
| Molybdenum, dissolve                     | ed                                            | 0.00243              | 0.00010            | mg/L    |                | 0.00239              |               |              | 2            | 20             |           |
| Nickel, dissolved                        |                                               | 0.00534              | 0.00040            | mg/L    |                | 0.00495              |               |              | 8            | 20             |           |
| Phosphorus, dissolved                    | d                                             | < 0.050              | 0.050              | mg/L    |                | < 0.050              |               |              |              | 20             |           |
| Potassium, dissolved                     |                                               | 11.3                 |                    | mg/L    |                | 11.0                 |               |              | 3            | 20             |           |
| Selenium, dissolved                      |                                               | < 0.00050            | 0.00050            | mg/L    |                | < 0.00050            |               |              |              | 20             |           |
| Silicon, dissolved                       |                                               | 17.2                 |                    | mg/L    |                | 16.8                 |               |              | 2            | 20             |           |
| Silver, dissolved                        |                                               | < 0.000050           | 0.000050           |         |                | < 0.000050           |               |              |              | 20             |           |
| Sodium, dissolved                        |                                               | 198                  |                    | mg/L    |                | 192                  |               |              | 3            | 20             |           |
| Strontium, dissolved                     |                                               | 2.94                 | 0.0010             |         |                | 2.80                 |               |              | 5            | 20             |           |
| Sulfur, dissolved                        |                                               | 192<br>< 0.00050     | 0.00050            | mg/L    |                | 189<br>< 0.00050     |               |              | 2            | 20             |           |
| Tellurium, dissolved Thallium, dissolved |                                               | 0.000029             | 0.00050            |         |                | 0.00003              |               |              |              | 20             |           |
| Thorium, dissolved                       |                                               | < 0.000029           | 0.000020           |         |                | < 0.000023           |               |              |              | 20             |           |
| Tin, dissolved                           |                                               | 0.0107               | 0.00010            |         |                | 0.0104               |               |              | 3            | 20             |           |
| Titanium, dissolved                      |                                               | < 0.0050             | 0.0050             |         |                | < 0.0050             |               |              |              | 20             |           |
| Tungsten, dissolved                      |                                               | < 0.0010             | 0.0010             |         |                | < 0.0010             |               |              |              | 20             |           |
| Uranium, dissolved                       |                                               | 0.00125              | 0.000020           |         |                | 0.00119              |               |              | 5            | 20             |           |
| Vanadium, dissolved                      |                                               | < 0.0010             | 0.0010             | mg/L    |                | < 0.0010             |               |              |              | 20             |           |
| Zinc, dissolved                          |                                               | 0.838                | 0.0040             |         |                | 0.816                |               |              | 3            | 20             |           |
| Zirconium, dissolved                     |                                               | < 0.00010            | 0.00010            | mg/L    |                | < 0.00010            |               |              |              | 20             |           |
| Reference (B1K259                        | 00-SRM1)                                      |                      |                    |         | Prepared       | : 2021-11-2          | 4, Analyze    | d: 2021-1    | 1-24         |                |           |
| Aluminum, dissolved                      |                                               | 0.219                | 0.0050             | mg/L    | 0.235          |                      | 93            | 70-130       |              |                |           |
| Antimony, dissolved                      |                                               | 0.0424               | 0.00020            |         | 0.0431         |                      | 98            | 70-130       |              |                |           |
| Arsenic, dissolved                       |                                               | 0.394                | 0.00050            |         | 0.423          |                      | 93            | 70-130       |              |                |           |
| Barium, dissolved                        |                                               | 2.92                 | 0.0050             | mg/L    | 3.30           |                      | 88            | 70-130       |              |                |           |
| Beryllium, dissolved                     |                                               | 0.181                | 0.00010            | mg/L    | 0.209          |                      | 87            | 70-130       |              |                |           |
| Boron, dissolved                         |                                               | 1.49                 | 0.0500             |         | 1.65           |                      | 90            | 70-130       |              |                |           |
| Cadmium, dissolved                       |                                               | 0.195                | 0.000010           | ma/l    | 0.221          |                      | 88            | 70-130       |              | _              |           |



| REPORTED TO Golder Associate<br>PROJECT Keddleston Ph. 2 | •              | )                         |                |                  | WORK<br>REPOR |                  | 21K2<br>2022 | 2544<br>2-01-20 | 13:52    |
|----------------------------------------------------------|----------------|---------------------------|----------------|------------------|---------------|------------------|--------------|-----------------|----------|
| Analyte                                                  | Result         | RL Units                  | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit     | % RPD        | RPD<br>Limit    | Qualifie |
| Dissolved Metals, Batch B1K2590, Co.                     | ntinued        |                           |                |                  |               |                  |              |                 |          |
| Reference (B1K2590-SRM1), Continue                       | d              |                           | Prepared       | : 2021-11-2      | 4, Analyze    | d: 2021-1        | 1-24         |                 |          |
| Calcium, dissolved, dissolved                            | 7.36           | 0.20 mg/L                 | 7.72           |                  | 95            | 70-130           |              |                 |          |
| Chromium, dissolved                                      | 0.414          | 0.00050 mg/L              | 0.434          |                  | 95            | 70-130           |              |                 |          |
| Cobalt, dissolved                                        | 0.119          | 0.00010 mg/L              | 0.124          |                  | 96            | 70-130           |              |                 |          |
| Copper, dissolved                                        | 0.821          | 0.00040 mg/L              | 0.815          |                  | 101           | 70-130           |              |                 |          |
| Iron, dissolved                                          | 1.26           | 0.010 mg/L                | 1.27           |                  | 100           | 70-130           |              |                 |          |
| Lead, dissolved                                          | 0.114          | 0.00020 mg/L              | 0.110          |                  | 103           | 70-130           |              |                 |          |
| Lithium, dissolved                                       | 0.0978         | 0.00010 mg/L              | 0.100          |                  | 98            | 70-130           |              |                 |          |
| Magnesium, dissolved, dissolved                          | 6.54           | 0.010 mg/L                | 6.59           |                  | 99            | 70-130           |              |                 |          |
| Manganese, dissolved                                     | 0.321          | 0.00020 mg/L              | 0.342          |                  | 94            | 70-130           |              |                 |          |
| Molybdenum, dissolved                                    | 0.400          | 0.00010 mg/L              | 0.404          |                  | 99            | 70-130           |              |                 |          |
| Nickel, dissolved                                        | 0.797          | 0.00040 mg/L              | 0.835          |                  | 95            | 70-130           |              |                 |          |
| Phosphorus, dissolved                                    | 0.411          | 0.050 mg/L                | 0.499          |                  | 82            | 70-130           |              |                 |          |
| Potassium, dissolved                                     | 2.77           | 0.10 mg/L                 | 2.88           |                  | 96            | 70-130           |              |                 |          |
| Selenium, dissolved<br>Sodium, dissolved                 | 0.0314<br>17.7 | 0.00050 mg/L<br>0.10 mg/L | 0.0324<br>18.0 |                  | 97<br>98      | 70-130<br>70-130 |              |                 |          |
| *                                                        | 0.827          | 0.10 mg/L<br>0.0010 mg/L  | 0.935          |                  | 96<br>88      | 70-130           |              |                 |          |
| Strontium, dissolved Thallium, dissolved                 | 0.0364         | 0.00000 mg/L              | 0.935          |                  | 94            | 70-130           |              |                 |          |
| Uranium, dissolved                                       | 0.235          | 0.000020 mg/L             | 0.0383         |                  | 91            | 70-130           |              |                 |          |
| Vanadium, dissolved                                      | 0.800          | 0.00020 mg/L              | 0.230          |                  | 92            | 70-130           |              |                 |          |
| Zinc, dissolved                                          | 0.810          | 0.0040 mg/L               | 0.848          |                  | 96            | 70-130           |              |                 |          |
| Blank (B1K2939-BLK1) Mercury, dissolved                  | < 0.000010     | 0.000010 mg/L             | 1 Tepared      | : 2021-11-2      | o, Anaryzo    | u. 2021-1        | 1-20         |                 |          |
| Blank (B1K2939-BLK2)                                     |                |                           | Prepared       | : 2021-11-2      | 6, Analyze    | d: 2021-1        | 1-26         |                 |          |
| Mercury, dissolved                                       | < 0.000010     | 0.000010 mg/L             | •              |                  | · ·           |                  |              |                 |          |
| Blank (B1K2939-BLK3)                                     |                |                           | Prepared       | : 2021-11-2      | 6, Analyze    | d: 2021-1        | 1-26         |                 |          |
| Mercury, dissolved                                       | < 0.000010     | 0.000010 mg/L             |                |                  |               |                  |              |                 |          |
| Reference (B1K2939-SRM1)                                 |                |                           |                | : 2021-11-2      | <u> </u>      |                  | 1-26         |                 |          |
| Mercury, dissolved                                       | 0.000459       | 0.000010 mg/L             | 0.000500       |                  | 92            | 0-200            |              |                 |          |
| Reference (B1K2939-SRM2)                                 |                |                           | •              | : 2021-11-2      |               |                  | 1-26         |                 |          |
| Mercury, dissolved                                       | 0.000481       | 0.000010 mg/L             | 0.000500       | 0004 44 0        | 96            | 0-200            | 4.00         |                 |          |
| Reference (B1K2939-SRM3) Mercury, dissolved              | 0.000464       | 0.000010 mg/L             | 0.000500       | : 2021-11-2      | 6, Analyze    | 0-200            | 1-26         |                 |          |
| General Parameters, Batch B1K2348                        | 3.000 10 1     | 3.0000.0 mg/L             | 2.200000       |                  |               | 5 200            |              |                 |          |
| ·                                                        |                |                           | Dronarad       | : 2021-11-2      | 1 Analyza     | 4. 2024 4        | 1 21         |                 |          |
| Blank (B1K2348-BLK1) Alkalinity, Total (as CaCO3)        | < 1.0          | 1.0 mg/L                  | Frepared       | . 2021-11-2      | i, Allalyze   | u. ∠U∠ I- I      | 1-41         |                 |          |
| Alkalinity, Phenolphthalein (as CaCO3)                   | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |
| Alkalinity, Bicarbonate (as CaCO3)                       | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |
| Alkalinity, Carbonate (as CaCO3)                         | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |
| Alkalinity, Hydroxide (as CaCO3)                         | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |
| Conductivity (EC)                                        | < 2.0          | 2.0 μS/cm                 |                |                  |               |                  |              |                 |          |
| Blank (B1K2348-BLK2)                                     |                |                           | Prepared       | : 2021-11-2      | 1, Analyze    | d: 2021-1        | 1-21         |                 |          |
| Alkalinity, Total (as CaCO3)                             | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |
| Alkalinity, Phenolphthalein (as CaCO3)                   | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |
| Alkalinity, Bicarbonate (as CaCO3)                       | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |
| Alkalinity, Carbonate (as CaCO3)                         | < 1.0          | 1.0 mg/L                  |                |                  |               |                  |              |                 |          |



|                                                                                                             | Golder Associates Ltd<br>Geddleston Ph. 2 G W | •       |                          |                             |                            |                                        |                                            |       | 1K2544<br>022-01-20 13:52 |           |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------|--------------------------|-----------------------------|----------------------------|----------------------------------------|--------------------------------------------|-------|---------------------------|-----------|
| Analyte                                                                                                     |                                               | Result  | RL Units                 | Spike<br>Level              | Source<br>Result           | % REC                                  | REC<br>Limit                               | % RPD | RPD<br>Limit              | Qualifier |
| General Parameters, I                                                                                       | Batch B1K2348, Conti                          | inued   |                          |                             |                            |                                        |                                            |       |                           |           |
| Blank (B1K2348-BLK2                                                                                         | 2), Continued                                 |         |                          | Prepared                    | : 2021-11-2                | 1, Analyze                             | d: 2021-1                                  | 11-21 |                           |           |
| Alkalinity, Hydroxide (as                                                                                   | CaCO3)                                        | < 1.0   | 1.0 mg/L                 |                             |                            |                                        |                                            |       |                           |           |
| Conductivity (EC)                                                                                           |                                               | < 2.0   | 2.0 µS/cm                |                             |                            |                                        |                                            |       |                           |           |
| LCS (B1K2348-BS1)                                                                                           |                                               |         |                          | •                           | : 2021-11-2                |                                        |                                            | 11-21 |                           |           |
| Alkalinity, Total (as CaCC                                                                                  | 03)                                           | 96.8    | 1.0 mg/L                 | 100                         |                            | 97                                     | 80-120                                     |       |                           |           |
| LCS (B1K2348-BS2)                                                                                           |                                               |         |                          |                             | : 2021-11-2                |                                        |                                            | 11-21 |                           |           |
| Alkalinity, Total (as CaCC                                                                                  | 93)                                           | 96.5    | 1.0 mg/L                 | 100                         |                            | 97                                     | 80-120                                     |       |                           |           |
| LCS (B1K2348-BS3)                                                                                           |                                               |         |                          | Prepared                    | : 2021-11-2                | 1, Analyze                             | d: 2021-1                                  | 11-21 |                           |           |
| Conductivity (EC)                                                                                           |                                               | 1420    | 2.0 µS/cm                | 1410                        |                            | 101                                    | 95-105                                     |       |                           |           |
| LCS (B1K2348-BS4)                                                                                           |                                               |         |                          | Prepared                    | : 2021-11-2                | 1, Analyze                             | d: 2021-1                                  | 11-21 |                           |           |
| Conductivity (EC)                                                                                           |                                               | 1430    | 2.0 μS/cm                | 1410                        |                            | 102                                    | 95-105                                     |       |                           |           |
| Reference (B1K2348-                                                                                         | SRM1)                                         |         |                          | Prepared                    | : 2021-11-2                | 1, Analyze                             | d: 2021-1                                  | 11-21 |                           |           |
| pH                                                                                                          |                                               | 6.99    | 0.10 pH units            | 7.01                        |                            | 100                                    | 98-102                                     |       |                           |           |
| Reference (B1K2348-                                                                                         | SRM2)                                         |         |                          | Prepared                    | : 2021-11-2                | 1, Analyze                             | d: 2021-1                                  | 11-21 |                           |           |
| pH                                                                                                          |                                               | 6.99    | 0.10 pH units            | 7.01                        |                            | 100                                    | 98-102                                     |       |                           |           |
| Solids, Total Dissolved  LCS (B1K2403-BS1)                                                                  |                                               | < 15    | 15 mg/L                  | Prepared                    | : 2021-11-2                | 2, Analyze                             | d: <b>2021-</b> 1                          | 11-22 |                           |           |
| Solids, Total Dissolved                                                                                     |                                               | 239     | 15 mg/L                  | 240                         |                            | 100                                    | 85-115                                     |       |                           |           |
| General Parameters, I                                                                                       | Batch B1K2479                                 |         |                          |                             |                            |                                        |                                            |       |                           |           |
| Blank (B1K2479-BLK                                                                                          | 1)                                            |         |                          | Prepared                    | : 2021-11-2                | 3, Analyze                             | d: 2021-1                                  | 11-23 |                           |           |
| Ammonia, Total (as N)                                                                                       |                                               | < 0.050 | 0.050 mg/L               |                             |                            |                                        |                                            |       |                           |           |
| Blank (B1K2479-BLK2                                                                                         | 2)                                            |         |                          | Prepared                    | : 2021-11-2                | 3, Analyze                             | d: 2021-1                                  | 11-23 |                           |           |
| Ammonia, Total (as N)                                                                                       |                                               | < 0.050 | 0.050 mg/L               |                             |                            |                                        |                                            |       |                           |           |
| Blank (B1K2479-BLK                                                                                          | 3)                                            |         |                          | Prepared                    | : 2021-11-2                | 3, Analyze                             | d: 2021-1                                  | 11-23 |                           |           |
| Ammonia, Total (as N)                                                                                       |                                               | < 0.050 | 0.050 mg/L               |                             |                            |                                        |                                            |       |                           |           |
| LCS (B1K2479-BS1)                                                                                           |                                               |         |                          | Prepared                    | : 2021-11-2                | 3, Analyze                             | d: 2021-1                                  | 11-23 |                           |           |
| Ammonia, Total (as N)                                                                                       |                                               | 0.990   | 0.050 mg/L               | 1.00                        |                            | 99                                     | 90-115                                     |       |                           |           |
|                                                                                                             |                                               |         |                          |                             |                            |                                        |                                            |       |                           |           |
| LCS (B1K2479-BS2)                                                                                           |                                               |         |                          | Prepared                    | : 2021-11-2                | 3, Analyze                             | d: 2021-1                                  | 11-23 |                           |           |
| LCS (B1K2479-BS2) Ammonia, Total (as N)                                                                     |                                               | 1.02    | 0.050 mg/L               | Prepared<br>1.00            | : 2021-11-2                | 3, Analyze<br>102                      | d: 2021-1<br>90-115                        | 11-23 |                           |           |
| Ammonia, Total (as N)                                                                                       |                                               | 1.02    | 0.050 mg/L               | 1.00                        |                            | 102                                    | 90-115                                     |       |                           |           |
| · · · · · · · · · · · · · · · · · · ·                                                                       |                                               | 1.02    | 0.050 mg/L<br>0.050 mg/L | 1.00                        | : 2021-11-2<br>: 2021-11-2 | 102                                    | 90-115                                     |       |                           |           |
| Ammonia, Total (as N)  LCS (B1K2479-BS3)  Ammonia, Total (as N)                                             | Batch B1K2490                                 |         |                          | 1.00<br>Prepared            |                            | 102<br>3, Analyze                      | 90-115<br>d: 2021-1                        |       |                           |           |
| Ammonia, Total (as N)  LCS (B1K2479-BS3)  Ammonia, Total (as N)                                             |                                               |         |                          | 1.00<br>Prepared<br>1.00    |                            | 102<br>3, Analyze<br>102               | 90-115<br>d: 2021-1<br>90-115              | 11-23 |                           |           |
| Ammonia, Total (as N)  LCS (B1K2479-BS3)  Ammonia, Total (as N)  General Parameters, I                      |                                               |         |                          | 1.00<br>Prepared<br>1.00    | : 2021-11-2                | 102<br>3, Analyze<br>102               | 90-115<br>d: 2021-1<br>90-115              | 11-23 |                           |           |
| Ammonia, Total (as N)  LCS (B1K2479-BS3)  Ammonia, Total (as N)  General Parameters, II  Blank (B1K2490-BLK |                                               | 1.02    | 0.050 mg/L               | 1.00 Prepared 1.00 Prepared | : 2021-11-2                | 102<br>3, Analyze<br>102<br>3, Analyze | 90-115<br>d: 2021-1<br>90-115<br>d: 2021-1 | 11-23 |                           |           |



Lead, total

Lithium, total

# **APPENDIX 2: QUALITY CONTROL RESULTS**

| REPORTED TO Golder Associates PROJECT Keddleston Ph. 2     | ,                     |                               |                                       |                           | WORK<br>REPOR | ORDER<br>RTED |        | 2544<br>2-01-20 | 13:52    |
|------------------------------------------------------------|-----------------------|-------------------------------|---------------------------------------|---------------------------|---------------|---------------|--------|-----------------|----------|
| Analyte                                                    | Result                | RL Units                      | Spike<br>Level                        | Source<br>Result          | % REC         | REC<br>Limit  | % RPD  | RPD<br>Limit    | Qualifie |
| General Parameters, Batch B1K2549                          |                       |                               |                                       |                           |               |               |        |                 |          |
| Blank (B1K2549-BLK1)                                       |                       |                               | Prepared                              | l: 2021-11-23             | 3, Analyze    | d: 2021-1     | 11-25  |                 |          |
| Nitrogen, Total Kjeldahl                                   | < 0.050               | 0.050 mg/L                    |                                       |                           | -             |               |        |                 |          |
| Blank (B1K2549-BLK2)                                       |                       | <u> </u>                      | Dranarad                              | l: 2021-11-2              | R Analyzo     | d: 2021_1     | 11_25  |                 |          |
| · · · · · · · · · · · · · · · · · · ·                      | < 0.050               | 0.050 mg/L                    | Перагеи                               | 1. 2021-11-20             | o, Analyze    | u. 2021-      | 11-23  |                 |          |
| Nitrogen, Total Kjeldahl                                   | < 0.050               | 0.050 Hig/L                   |                                       |                           |               |               |        |                 |          |
| LCS (B1K2549-BS1)                                          |                       |                               | Prepared                              | l: 2021-11-20             | 3, Analyze    | d: 2021-1     | 11-25  |                 |          |
| Nitrogen, Total Kjeldahl                                   | 1.00                  | 0.050 mg/L                    | 1.00                                  |                           | 100           | 85-115        |        |                 |          |
| LCS (B1K2549-BS2)                                          |                       |                               | Prepared                              | l: 2021-11-23             | 3. Analvze    | d: 2021-1     | 11-25  |                 |          |
| Nitrogen, Total Kjeldahl                                   | 0.997                 | 0.050 mg/L                    | 1.00                                  |                           | 100           | 85-115        |        |                 |          |
| General Parameters, Batch B1K2618 Blank (B1K2618-BLK1)     |                       |                               | Prepared                              | l: 2021-11-2              | 1, Analyze    | d: 2021-1     | 11-24  |                 |          |
| Solids, Total Suspended                                    | < 2.0                 | 2.0 mg/L                      |                                       |                           |               |               |        |                 |          |
| Blank (B1K2618-BLK2)                                       |                       |                               | Dropared                              | l: 2021-11-24             | 1 Analyzo     | d: 2021_1     | 11_2/  |                 |          |
| Solids, Total Suspended                                    |                       | 2.0                           | Fiepaieu                              | 1. 2021-11-2              | +, Analyze    | u. 2021-      | 11-24  |                 |          |
| Solids, Total Suspended                                    | < 2.0                 | 2.0 mg/L                      |                                       |                           |               |               |        |                 |          |
| LCS (B1K2618-BS1)                                          |                       |                               | Prepared                              | l: 2021-11-2 <sup>4</sup> | 1, Analyze    | d: 2021-1     | 11-24  |                 |          |
| Solids, Total Suspended                                    | 88.0                  | 10.0 mg/L                     | 100                                   |                           | 88            | 85-115        |        |                 |          |
| LCS (B1K2618-BS2)                                          |                       |                               | Prepared                              | l: 2021-11-24             | 1. Analvze    | d: 2021-1     | 11-24  |                 |          |
| Solids, Total Suspended                                    | 104                   | 10.0 mg/L                     | 100                                   |                           | 104           | 85-115        |        |                 |          |
|                                                            |                       |                               |                                       | . 2024 44 2               | 1 Analys      |               | 14.04  |                 |          |
| Duplicate (B1K2618-DUP2) Solids, Total Suspended           | 149                   | 2.0 mg/L                      | Prepared                              | l: 2021-11-24<br>151      | ŧ, Anaiy∠e    | d: 2021-      | 1 1-24 | 20              |          |
| Microbiological Parameters, Batch B1K Blank (B1K2238-BLK1) |                       |                               | · · · · · · · · · · · · · · · · · · · | l: 2021-11-19             | ), Analyze    | d: 2021-1     | 11-19  |                 |          |
| Coliforms, Total                                           | < 1<br>< 1            | 1 MPN/100<br>1 MPN/100        |                                       |                           |               |               |        |                 |          |
| E. coli                                                    |                       | 1 MPN/100                     | ML                                    |                           |               |               |        |                 |          |
| Blank (B1K2238-BLK2)                                       |                       |                               | Prepared                              | : 2021-11-19              | 9, Analyze    | d: 2021-1     | 11-19  |                 |          |
| Coliforms, Fecal                                           | < 1                   | 1 MPN/100                     |                                       |                           |               |               |        |                 |          |
| E. coli  Fotal Metals, Batch B1K2652                       | <1                    | 1 MPN/100                     |                                       | l. 2024, 44, 2.           | 1 Analysis    | ٠, ٥٥٥٨ ،     | 14.04  |                 |          |
| Blank (B1K2652-BLK1)                                       | 10.0050               | 0.0050 "                      | riepared                              | l: 2021-11-2 <sup>4</sup> | +, Analyze    | u. ∠UZ I-1    | 11-24  |                 |          |
| Aluminum, total Antimony, total                            | < 0.0050<br>< 0.00020 | 0.0050 mg/L<br>0.00020 mg/L   |                                       |                           |               |               |        |                 |          |
| Arsenic, total                                             | < 0.00020             | 0.00020 Hig/L<br>0.00050 mg/L |                                       |                           |               |               |        |                 |          |
| Barium, total                                              | < 0.0050              | 0.0050 mg/L                   |                                       |                           |               |               |        |                 |          |
| Beryllium, total                                           | < 0.00010             | 0.00010 mg/L                  |                                       |                           |               |               |        |                 |          |
| Bismuth, total                                             | < 0.00010             | 0.00010 mg/L                  |                                       |                           |               |               |        |                 |          |
| Boron, total                                               | < 0.0500              | 0.0500 mg/L                   |                                       |                           |               |               |        |                 |          |
| Cadmium, total                                             | < 0.000010            | 0.000010 mg/L                 |                                       |                           |               |               |        |                 |          |
| Calcium, total  Chromium, total                            | < 0.20<br>< 0.00050   | 0.20 mg/L<br>0.00050 mg/L     |                                       |                           |               |               |        |                 |          |
| Cobalt, total                                              | < 0.00050             | 0.00030 mg/L                  |                                       |                           |               |               |        |                 |          |
| Copper, total                                              | < 0.00010             | 0.00040 mg/L                  |                                       |                           |               |               |        |                 |          |
| Iron, total                                                | < 0.010               | 0.010 mg/L                    |                                       |                           |               |               |        |                 |          |
| Lead total                                                 | < 0.00020             | 0.00020 mg/l                  |                                       |                           |               |               |        |                 |          |

0.00020 mg/L

0.00010 mg/L

< 0.00020

< 0.00010



| REPORTED TO<br>PROJECT                                                                                      | Golder Associates Ltd. (Kelowna)<br>Keddleston Ph. 2 G W Study |                                                                                        |                                                                        |                                                      |                |                  | WORK ORDER<br>REPORTED |              |       | 21K2544<br>2022-01-20 |           |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------|------------------|------------------------|--------------|-------|-----------------------|-----------|--|
| Analyte                                                                                                     |                                                                | Result                                                                                 | RL                                                                     | Units                                                | Spike<br>Level | Source<br>Result | % REC                  | REC<br>Limit | % RPD | RPD<br>Limit          | Qualifier |  |
| Total Metals, Batc                                                                                          | h B1K2652, Continued                                           |                                                                                        |                                                                        |                                                      |                |                  |                        |              |       |                       |           |  |
| Blank (B1K2652-B                                                                                            | LK1), Continued                                                |                                                                                        |                                                                        |                                                      | Prepared       | l: 2021-11-2     | 4, Analyze             | d: 2021-1    | 1-24  |                       |           |  |
| Magnesium, total                                                                                            |                                                                | < 0.010                                                                                | 0.010                                                                  | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Manganese, total                                                                                            |                                                                | < 0.00020                                                                              | 0.00020                                                                | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Mercury, total                                                                                              |                                                                | < 0.000040                                                                             | 0.000040                                                               | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Molybdenum, total                                                                                           |                                                                | < 0.00010                                                                              | 0.00010                                                                | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Nickel, total                                                                                               |                                                                | < 0.00040                                                                              | 0.00040                                                                | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Phosphorus, total                                                                                           |                                                                | < 0.050                                                                                | 0.050                                                                  |                                                      |                |                  |                        |              |       |                       |           |  |
| Potassium, total                                                                                            |                                                                | < 0.10                                                                                 |                                                                        | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Selenium, total                                                                                             |                                                                | < 0.00050                                                                              | 0.00050                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Silicon, total                                                                                              |                                                                | < 1.0                                                                                  |                                                                        | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Silver, total                                                                                               |                                                                | < 0.000050                                                                             | 0.000050                                                               |                                                      |                |                  |                        |              |       |                       |           |  |
| Sodium, total                                                                                               |                                                                | < 0.10                                                                                 |                                                                        | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Strontium, total                                                                                            |                                                                | < 0.0010                                                                               | 0.0010                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Sulfur, total                                                                                               |                                                                | < 0.00050                                                                              |                                                                        | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Tellurium, total                                                                                            |                                                                |                                                                                        | 0.00050<br>0.000020                                                    |                                                      |                |                  |                        |              |       |                       |           |  |
| Thallium, total Thorium, total                                                                              |                                                                | < 0.000020                                                                             | 0.000020                                                               |                                                      |                |                  |                        |              |       |                       |           |  |
| Tin, total                                                                                                  |                                                                | < 0.00010                                                                              | 0.00010                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Titanium, total                                                                                             |                                                                | < 0.0050                                                                               | 0.0050                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Tungsten, total                                                                                             |                                                                | < 0.0030                                                                               | 0.0030                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Uranium, total                                                                                              |                                                                | < 0.000020                                                                             | 0.000020                                                               |                                                      |                |                  |                        |              |       |                       |           |  |
| Vanadium, total                                                                                             |                                                                | < 0.0010                                                                               | 0.0010                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Zinc, total                                                                                                 |                                                                | < 0.0040                                                                               | 0.0040                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Zirconium, total                                                                                            |                                                                | < 0.00010                                                                              | 0.00010                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| ·                                                                                                           |                                                                |                                                                                        |                                                                        |                                                      |                |                  |                        |              |       |                       |           |  |
| Blank (B1K2652-B                                                                                            | SLK2)                                                          |                                                                                        |                                                                        |                                                      | Prepared       | l: 2021-11-2     | 4, Analyze             | d: 2021-1    | 1-24  |                       |           |  |
| Aluminum, total                                                                                             |                                                                | < 0.0050                                                                               | 0.0050                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Antimony, total                                                                                             |                                                                | < 0.00020                                                                              | 0.00020                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Arsenic, total                                                                                              |                                                                | < 0.00050                                                                              | 0.00050                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Barium, total                                                                                               |                                                                | < 0.0050                                                                               | 0.0050                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Beryllium, total                                                                                            |                                                                | < 0.00010                                                                              | 0.00010                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Bismuth, total                                                                                              |                                                                | < 0.00010                                                                              | 0.00010                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Boron, total                                                                                                |                                                                | < 0.0500                                                                               | 0.0500                                                                 |                                                      |                |                  |                        |              |       |                       |           |  |
| Cadmium, total                                                                                              |                                                                | < 0.000010                                                                             | 0.000010                                                               |                                                      |                |                  |                        |              |       |                       |           |  |
| Calcium, total Chromium, total                                                                              |                                                                | < 0.20                                                                                 |                                                                        | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
|                                                                                                             |                                                                | < 0.00050                                                                              | 0.00050                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Cobalt, total Copper, total                                                                                 |                                                                | < 0.00010<br>< 0.00040                                                                 | 0.00010<br>0.00040                                                     |                                                      |                |                  |                        |              |       |                       |           |  |
| Iron, total                                                                                                 |                                                                | < 0.00040                                                                              | 0.00040                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Lead, total                                                                                                 |                                                                | < 0.0020                                                                               | 0.00020                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Lithium, total                                                                                              |                                                                | < 0.00020                                                                              | 0.00020                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Magnesium, total                                                                                            |                                                                | < 0.010                                                                                | 0.010                                                                  |                                                      |                |                  |                        |              |       |                       |           |  |
| Manganese, total                                                                                            |                                                                | < 0.00020                                                                              | 0.00020                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Mercury, total                                                                                              |                                                                | < 0.000040                                                                             | 0.000040                                                               |                                                      |                |                  |                        |              |       |                       |           |  |
| Molybdenum, total                                                                                           |                                                                | < 0.00010                                                                              | 0.00010                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
| Nickel, total                                                                                               |                                                                | < 0.00040                                                                              | 0.00040                                                                |                                                      |                |                  |                        |              |       |                       |           |  |
|                                                                                                             |                                                                |                                                                                        |                                                                        | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| Phosphorus, total                                                                                           |                                                                | < 0.050                                                                                |                                                                        |                                                      |                |                  |                        |              |       |                       |           |  |
| Phosphorus, total<br>Potassium, total                                                                       |                                                                | < 0.050                                                                                |                                                                        | mg/L                                                 |                |                  |                        |              |       |                       |           |  |
| •                                                                                                           |                                                                |                                                                                        |                                                                        |                                                      |                |                  |                        |              |       |                       |           |  |
| Potassium, total                                                                                            |                                                                | < 0.10                                                                                 | 0.10<br>0.00050                                                        |                                                      |                |                  |                        |              |       |                       |           |  |
| Potassium, total<br>Selenium, total                                                                         |                                                                | < 0.10<br>< 0.00050                                                                    | 0.10<br>0.00050                                                        | mg/L<br>mg/L                                         |                |                  |                        |              |       |                       |           |  |
| Potassium, total<br>Selenium, total<br>Silicon, total                                                       |                                                                | < 0.10<br>< 0.00050<br>< 1.0                                                           | 0.10<br>0.00050<br>1.0<br>0.000050                                     | mg/L<br>mg/L                                         |                |                  |                        |              |       |                       |           |  |
| Potassium, total<br>Selenium, total<br>Silicon, total<br>Silver, total                                      |                                                                | < 0.10<br>< 0.00050<br>< 1.0<br>< 0.000050                                             | 0.10<br>0.00050<br>1.0<br>0.000050                                     | mg/L<br>mg/L<br>mg/L<br>mg/L                         |                |                  |                        |              |       |                       |           |  |
| Potassium, total Selenium, total Silicon, total Silver, total Sodium, total                                 |                                                                | < 0.10<br>< 0.00050<br>< 1.0<br>< 0.000050<br>< 0.10                                   | 0.10<br>0.00050<br>1.0<br>0.000050<br>0.10<br>0.0010<br>3.0            | mg/L mg/L mg/L mg/L mg/L mg/L                        |                |                  |                        |              |       |                       |           |  |
| Potassium, total<br>Selenium, total<br>Silicon, total<br>Silver, total<br>Sodium, total<br>Strontium, total |                                                                | < 0.10<br>< 0.00050<br>< 1.0<br>< 0.000050<br>< 0.10<br>< 0.0010<br>< 3.0<br>< 0.00050 | 0.10<br>0.00050<br>1.0<br>0.000050<br>0.10<br>0.0010<br>3.0<br>0.00050 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L                   |                |                  |                        |              |       |                       |           |  |
| Potassium, total Selenium, total Silicon, total Silver, total Sodium, total Strontium, total Sulfur, total  |                                                                | < 0.10<br>< 0.00050<br>< 1.0<br>< 0.000050<br>< 0.10<br>< 0.0010<br>< 3.0              | 0.10<br>0.00050<br>1.0<br>0.000050<br>0.10<br>0.0010<br>3.0            | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L |                |                  |                        |              |       |                       |           |  |



| REPORTED TO<br>PROJECT       | Golder Associates Ltd. (Kelowna<br>Keddleston Ph. 2 G W Study |                    |       | WORK ORDER<br>REPORTED |                  | 21K2544<br>2022-01-20 |                  | 13:52 |              |          |
|------------------------------|---------------------------------------------------------------|--------------------|-------|------------------------|------------------|-----------------------|------------------|-------|--------------|----------|
| Analyte                      | Result                                                        | RL                 | Units | Spike<br>Level         | Source<br>Result | % REC                 | REC<br>Limit     | % RPD | RPD<br>Limit | Qualifie |
| Total Metals, Batc           | h B1K2652, Continued                                          |                    |       |                        |                  |                       |                  |       |              |          |
| Blank (B1K2652-B             | LK2), Continued                                               |                    |       | Prepared               | : 2021-11-2      | 4, Analyze            | d: 2021-1        | 11-24 |              |          |
| Tin, total                   | < 0.00020                                                     | 0.00020            | ma/L  | ·                      |                  |                       |                  |       |              |          |
| Titanium, total              | < 0.0050                                                      | 0.0050             |       |                        |                  |                       |                  |       |              |          |
| Tungsten, total              | < 0.0010                                                      | 0.0010             |       |                        |                  |                       |                  |       |              |          |
| Uranium, total               | < 0.000020                                                    | 0.000020           | mg/L  |                        |                  |                       |                  |       |              |          |
| Vanadium, total              | < 0.0010                                                      | 0.0010             | mg/L  |                        |                  |                       |                  |       |              |          |
| Zinc, total                  | < 0.0040                                                      | 0.0040             | mg/L  |                        |                  |                       |                  |       |              |          |
| Zirconium, total             | < 0.00010                                                     | 0.00010            | mg/L  |                        |                  |                       |                  |       |              |          |
| LCS (B1K2652-BS              | i <b>1</b> )                                                  |                    |       | Prepared               | : 2021-11-2      | 4, Analyze            | d: 2021-1        | 11-24 |              |          |
| Aluminum, total              | 0.0226                                                        | 0.0050             | mg/L  | 0.0200                 |                  | 113                   | 80-120           |       |              |          |
| Antimony, total              | 0.0207                                                        | 0.00020            |       | 0.0200                 |                  | 103                   | 80-120           |       |              |          |
| Arsenic, total               | 0.0183                                                        | 0.00050            |       | 0.0200                 |                  | 91                    | 80-120           |       |              |          |
| Barium, total                | 0.0195                                                        | 0.0050             | mg/L  | 0.0200                 |                  | 97                    | 80-120           |       |              |          |
| Beryllium, total             | 0.0205                                                        | 0.00010            | mg/L  | 0.0200                 |                  | 103                   | 80-120           |       |              |          |
| Bismuth, total               | 0.0198                                                        | 0.00010            |       | 0.0200                 |                  | 99                    | 80-120           |       |              |          |
| Boron, total                 | < 0.0500                                                      | 0.0500             |       | 0.0200                 |                  | 109                   | 80-120           |       |              |          |
| Cadmium, total               | 0.0182                                                        | 0.000010           |       | 0.0200                 |                  | 91                    | 80-120           |       |              |          |
| Calcium, total               | 2.13                                                          |                    | mg/L  | 2.00                   |                  | 106                   | 80-120           |       |              |          |
| Chromium, total              | 0.0208                                                        | 0.00050            |       | 0.0200                 |                  | 104                   | 80-120           |       |              |          |
| Cobalt, total                | 0.0200                                                        | 0.00010            |       | 0.0200                 |                  | 100                   | 80-120           |       |              |          |
| Copper, total                | 0.0192                                                        | 0.00040            |       | 0.0200                 |                  | 96                    | 80-120           |       |              |          |
| ron, total<br>Lead, total    | 1.99<br>0.0216                                                | 0.010              |       | 2.00<br>0.0200         |                  | 99<br>108             | 80-120<br>80-120 |       |              |          |
| Lithium, total               | 0.0224                                                        | 0.00020            |       | 0.0200                 |                  | 112                   | 80-120           |       |              |          |
| Magnesium, total             | 2.21                                                          | 0.010              |       | 2.00                   |                  | 111                   | 80-120           |       |              |          |
| Manganese, total             | 0.0190                                                        | 0.00020            |       | 0.0200                 |                  | 95                    | 80-120           |       |              |          |
| Mercury, total               | 0.000953                                                      | 0.000040           |       | 0.00101                |                  | 94                    | 80-120           |       |              |          |
| Molybdenum, total            | 0.0205                                                        | 0.00010            |       | 0.0200                 |                  | 103                   | 80-120           |       |              |          |
| Nickel, total                | 0.0208                                                        | 0.00040            | mg/L  | 0.0200                 |                  | 104                   | 80-120           |       |              |          |
| Phosphorus, total            | 1.99                                                          | 0.050              | mg/L  | 2.00                   |                  | 99                    | 80-120           |       |              |          |
| Potassium, total             | 2.09                                                          | 0.10               | mg/L  | 2.00                   |                  | 105                   | 80-120           |       |              |          |
| Selenium, total              | 0.0164                                                        | 0.00050            | mg/L  | 0.0200                 |                  | 82                    | 80-120           |       |              |          |
| Silicon, total               | 2.3                                                           |                    | mg/L  | 2.00                   |                  | 114                   | 80-120           |       |              |          |
| Silver, total                | 0.0189                                                        | 0.000050           |       | 0.0200                 |                  | 94                    | 80-120           |       |              |          |
| Sodium, total                | 2.12                                                          |                    | mg/L  | 2.00                   |                  | 106                   | 80-120           |       |              |          |
| Strontium, total             | 0.0185                                                        | 0.0010             |       | 0.0200                 |                  | 92                    | 80-120           |       |              |          |
| Sulfur, total                | 5.4                                                           |                    | mg/L  | 5.00                   |                  | 108                   | 80-120           |       |              |          |
| Tellurium, total             | 0.0165                                                        | 0.00050            |       | 0.0200                 |                  | 82                    | 80-120           |       |              |          |
| Thallium, total              | 0.0191                                                        | 0.000020           |       | 0.0200                 |                  | 95                    | 80-120           |       |              |          |
| Thorium, total<br>Tin, total | 0.0197<br>0.0215                                              | 0.00010<br>0.00020 |       | 0.0200                 |                  | 99<br>107             | 80-120<br>80-120 |       |              |          |
| Titanium, total              | 0.0213                                                        | 0.00020            |       | 0.0200                 |                  | 112                   | 80-120           |       |              |          |
| Tungsten, total              | 0.0224                                                        | 0.0030             |       | 0.0200                 |                  | 102                   | 80-120           |       |              |          |
| Jranium, total               | 0.0201                                                        | 0.000020           |       | 0.0200                 |                  | 101                   | 80-120           |       |              |          |
| Vanadium, total              | 0.0215                                                        | 0.0010             |       | 0.0200                 |                  | 108                   | 80-120           |       |              |          |
| Zinc, total                  | 0.0213                                                        | 0.0040             |       | 0.0200                 |                  | 106                   | 80-120           |       |              |          |
| Zirconium, total             | 0.0218                                                        | 0.00010            |       | 0.0200                 |                  | 109                   | 80-120           |       |              |          |
| LCS (B1K2652-BS              | (2)                                                           |                    |       | Prepared               | : 2021-11-2      | 4, Analyze            | d: 2021-1        | 11-24 |              |          |
| Aluminum, total              | 0.0238                                                        | 0.0050             |       | 0.0200                 |                  | 119                   | 80-120           |       |              |          |
| Antimony, total              | 0.0212                                                        | 0.00020            |       | 0.0200                 |                  | 106                   | 80-120           |       |              |          |
| Arsenic, total               | 0.0187                                                        | 0.00050            |       | 0.0200                 |                  | 94                    | 80-120           |       |              |          |
| Barium, total                | 0.0204                                                        | 0.0050             |       | 0.0200                 |                  | 102                   | 80-120           |       |              |          |
| Beryllium, total             | 0.0207                                                        | 0.00010            |       | 0.0200                 |                  | 104                   | 80-120           |       |              |          |
| Bismuth, total               | 0.0196                                                        | 0.00010            |       | 0.0200                 |                  | 98                    | 80-120           |       |              |          |
| Boron, total                 | < 0.0500                                                      | 0.0500             |       | 0.0200                 |                  | 111                   | 80-120           |       |              |          |
| Cadmium, total               | 0.0191                                                        | 0.000010           | mg/L  | 0.0200                 |                  | 95                    | 80-120           |       | Do           | ge 25 o  |



| REPORTED TO<br>PROJECT         | Golder Associates I<br>Keddleston Ph. 2 G | ,                | )          |       |                |                  | WORK ORDER<br>REPORTED |                  | 21K2544<br>2022-01-2 |              | 20 13:52  |  |
|--------------------------------|-------------------------------------------|------------------|------------|-------|----------------|------------------|------------------------|------------------|----------------------|--------------|-----------|--|
| Analyte                        |                                           | Result           | RL         | Units | Spike<br>Level | Source<br>Result | % REC                  | REC<br>Limit     | % RPD                | RPD<br>Limit | Qualifier |  |
| Total Metals, Batch            | B1K2652, Continued                        |                  |            |       |                |                  |                        |                  |                      |              |           |  |
| LCS (B1K2652-BS2               | 2), Continued                             |                  |            |       | Prepared       | : 2021-11-2      | 4, Analyze             | d: 2021-1        | 1-24                 |              |           |  |
| Calcium, total                 |                                           | 2.11             | 0.20       | mg/L  | 2.00           |                  | 105                    | 80-120           |                      |              |           |  |
| Chromium, total                |                                           | 0.0217           | 0.00050    | mg/L  | 0.0200         |                  | 108                    | 80-120           |                      |              |           |  |
| Cobalt, total                  |                                           | 0.0205           | 0.00010    | mg/L  | 0.0200         |                  | 103                    | 80-120           |                      |              |           |  |
| Copper, total                  |                                           | 0.0200           | 0.00040    | mg/L  | 0.0200         |                  | 100                    | 80-120           |                      |              |           |  |
| Iron, total                    |                                           | 2.02             | 0.010      | mg/L  | 2.00           |                  | 101                    | 80-120           |                      |              |           |  |
| Lead, total                    |                                           | 0.0223           | 0.00020    |       | 0.0200         |                  | 111                    | 80-120           |                      |              |           |  |
| Lithium, total                 |                                           | 0.0230           | 0.00010    |       | 0.0200         |                  | 115                    | 80-120           |                      |              |           |  |
| Magnesium, total               |                                           | 2.29             |            | mg/L  | 2.00           |                  | 114                    | 80-120           |                      |              |           |  |
| Manganese, total               |                                           | 0.0197           | 0.00020    |       | 0.0200         |                  | 99                     | 80-120           |                      |              |           |  |
| Mercury, total                 |                                           | 0.000920         | 0.000040   |       | 0.00101        |                  | 91                     | 80-120           |                      |              |           |  |
| Molybdenum, total              |                                           | 0.0211           | 0.00010    |       | 0.0200         |                  | 106                    | 80-120           |                      |              |           |  |
| Nickel, total                  |                                           | 0.0218           | 0.00040    |       | 0.0200         |                  | 109                    | 80-120           |                      |              |           |  |
| Phosphorus, total              |                                           | 2.07             |            | mg/L  | 2.00           |                  | 104                    | 80-120           |                      |              |           |  |
| Potassium, total               |                                           | 2.19             |            | mg/L  | 2.00           |                  | 109                    | 80-120           |                      |              |           |  |
| Selenium, total                |                                           | 0.0193           | 0.00050    |       | 0.0200         |                  | 96                     | 80-120           |                      |              |           |  |
| Silicon, total                 |                                           | 2.3              |            | mg/L  | 2.00           |                  | 114                    | 80-120           |                      |              |           |  |
| Silver, total                  |                                           | 0.0194           | 0.000050   |       | 0.0200         |                  | 97                     | 80-120           |                      |              |           |  |
| Sodium, total                  |                                           | 2.17             |            | mg/L  | 2.00           |                  | 109                    | 80-120           |                      |              |           |  |
| Strontium, total               |                                           | 0.0188           | 0.0010     |       | 0.0200         |                  | 94                     | 80-120           |                      |              |           |  |
| Sulfur, total                  |                                           | 5.7              |            | mg/L  | 5.00           |                  | 114                    | 80-120           |                      |              |           |  |
| Tellurium, total               |                                           | 0.0163           | 0.00050    |       | 0.0200         |                  | 82                     | 80-120           |                      |              |           |  |
| Thallium, total                |                                           | 0.0189           | 0.000020   |       | 0.0200         |                  | 95<br>98               | 80-120           |                      |              |           |  |
| Thorium, total Tin, total      |                                           | 0.0196<br>0.0222 | 0.00010    |       | 0.0200         |                  | 111                    | 80-120<br>80-120 |                      |              |           |  |
| Titanium, total                |                                           | 0.0222           | 0.0050     |       | 0.0200         |                  | 118                    | 80-120           |                      |              |           |  |
| Tungsten, total                |                                           | 0.0208           | 0.0030     |       | 0.0200         |                  | 104                    | 80-120           |                      |              |           |  |
| Uranium, total                 |                                           | 0.0198           | 0.000020   |       | 0.0200         |                  | 99                     | 80-120           |                      |              |           |  |
| Vanadium, total                |                                           | 0.0229           | 0.00020    |       | 0.0200         |                  | 114                    | 80-120           |                      |              |           |  |
| Zinc, total                    |                                           | 0.0227           | 0.0040     |       | 0.0200         |                  | 113                    | 80-120           |                      |              |           |  |
| Zirconium, total               |                                           | 0.0231           | 0.00010    |       | 0.0200         |                  | 115                    | 80-120           |                      |              |           |  |
| Duplicate (B1K265              | 2-DUP1)                                   |                  | urce: 21K2 |       |                | : 2021-11-2      |                        |                  | 1_24                 |              |           |  |
| • •                            | 2-001 1)                                  | < 0.0050         | 0.0050     |       | 1 Toparca      | < 0.0050         | T, Allaly20            | u. 2021-1        | 1-2-                 | 20           |           |  |
| Aluminum, total                |                                           | < 0.0000         |            |       |                | < 0.0030         |                        |                  |                      | 20           |           |  |
| Antimony, total Arsenic, total |                                           | < 0.00020        | 0.00020    |       |                | < 0.00050        |                        |                  |                      | 20           |           |  |
| Barium, total                  |                                           | 0.0088           | 0.0050     |       |                | 0.0086           |                        |                  |                      | 20           |           |  |
| Beryllium, total               |                                           | < 0.00010        | 0.0030     |       |                | < 0.0000         |                        |                  |                      | 20           |           |  |
| Bismuth, total                 |                                           | < 0.00010        | 0.00010    |       |                | < 0.00010        |                        |                  |                      | 20           |           |  |
| Boron, total                   |                                           | 0.0564           | 0.0500     |       |                | < 0.0500         |                        |                  |                      | 20           |           |  |
| Cadmium, total                 |                                           | 0.000040         | 0.000010   |       |                | 0.000048         |                        |                  |                      | 20           |           |  |
| Calcium, total                 |                                           | 119              |            | mg/L  |                | 127              |                        |                  | 6                    | 20           |           |  |
| Chromium, total                |                                           | 0.00054          | 0.00050    |       |                | 0.00055          |                        |                  | -                    | 20           |           |  |
| Cobalt, total                  |                                           | 0.00051          | 0.00010    |       |                | 0.00052          |                        |                  | 3                    | 20           |           |  |
| Copper, total                  |                                           | 0.00424          | 0.00040    |       |                | 0.00441          |                        |                  | 4                    | 20           |           |  |
| Iron, total                    |                                           | 0.197            |            | mg/L  |                | 0.172            |                        |                  | 13                   | 20           |           |  |
| Lead, total                    |                                           | 0.00034          | 0.00020    |       |                | 0.00035          |                        |                  |                      | 20           |           |  |
| Lithium, total                 |                                           | 0.562            | 0.00010    |       |                | 0.585            |                        |                  | 4                    | 20           |           |  |
| Magnesium, total               |                                           | 87.6             |            | mg/L  |                | 90.5             |                        |                  | 3                    | 20           |           |  |
| Manganese, total               |                                           | 0.0365           | 0.00020    |       |                | 0.0376           |                        |                  | 3                    | 20           |           |  |
| Mercury, total                 |                                           | < 0.000040       | 0.000040   |       |                | < 0.000040       |                        |                  |                      | 20           |           |  |
| Molybdenum, total              |                                           | 0.00281          | 0.00010    | mg/L  |                | 0.00295          |                        |                  | 5                    | 20           |           |  |
| Nickel, total                  |                                           | 0.00629          | 0.00040    | mg/L  |                | 0.00658          |                        |                  | 5                    | 20           |           |  |
| Phosphorus, total              |                                           | < 0.050          | 0.050      | mg/L  |                | < 0.050          |                        |                  |                      | 20           |           |  |
| Potassium, total               |                                           | 13.2             |            | mg/L  |                | 13.6             |                        |                  | 3                    | 20           |           |  |
| Selenium, total                |                                           | 0.00050          | 0.00050    |       |                | < 0.00050        |                        |                  |                      | 20           |           |  |
| Silicon, total                 |                                           | 18.8             | 1.0        | mg/L  |                | 19.4             |                        |                  | 3                    | 20           |           |  |



| REPORTED TO<br>PROJECT           | Golder Associates<br>Keddleston Ph. 2 G |                     |                              | WORK ORDER<br>REPORTED |                     | 21K2544<br>2022-01-20 13:52 |                  |       |              |           |
|----------------------------------|-----------------------------------------|---------------------|------------------------------|------------------------|---------------------|-----------------------------|------------------|-------|--------------|-----------|
| Analyte                          |                                         | Result              | RL Units                     | Spike<br>Level         | Source<br>Result    | % REC                       | REC<br>Limit     | % RPD | RPD<br>Limit | Qualifier |
| Total Metals, Batc               | h B1K2652, Continued                    | ,                   |                              |                        |                     |                             |                  |       |              |           |
| Duplicate (B1K26                 | 52-DUP1), Continued                     | So                  | ource: 21K2544-02            | Prepared               | d: 2021-11-2        | 4, Analyze                  | d: 2021-1        | 1-24  |              |           |
| Silver, total                    | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,  | < 0.000050          | 0.000050 mg/L                | •                      | < 0.000050          | •                           |                  |       | 20           |           |
| Sodium, total                    |                                         | 207                 | 0.10 mg/L                    |                        | 213                 |                             |                  | 3     | 20           |           |
| Strontium, total                 |                                         | 3.21                | 0.0010 mg/L                  |                        | 3.33                |                             |                  | 4     | 20           |           |
| Sulfur, total                    |                                         | 232                 | 3.0 mg/L                     |                        | 240                 |                             |                  | 3     | 20           |           |
| Tellurium, total                 |                                         | < 0.00050           | 0.00050 mg/L                 |                        | < 0.00050           |                             |                  |       | 20           |           |
| Thallium, total                  |                                         | 0.000029            | 0.000020 mg/L                |                        | 0.000033            |                             |                  |       | 20           |           |
| Thorium, total                   |                                         | < 0.00010           | 0.00010 mg/L                 |                        | < 0.00010           |                             |                  |       | 20           |           |
| Tin, total Titanium, total       |                                         | 0.00326<br>< 0.0050 | 0.00020 mg/L<br>0.0050 mg/L  |                        | 0.00332<br>< 0.0050 |                             |                  | 2     | 20           |           |
| Tungsten, total                  |                                         | < 0.0030            | 0.0030 mg/L                  |                        | < 0.0030            |                             |                  |       | 20           |           |
| Uranium, total                   |                                         | 0.00136             | 0.000020 mg/L                |                        | 0.00143             |                             |                  | 5     | 20           |           |
| Vanadium, total                  |                                         | < 0.0010            | 0.0010 mg/L                  |                        | < 0.0010            |                             |                  |       | 20           | BLK       |
| Zinc, total                      |                                         | 0.924               | 0.0040 mg/L                  |                        | 0.955               |                             |                  | 3     | 20           |           |
| Zirconium, total                 |                                         | < 0.00010           | 0.00010 mg/L                 |                        | < 0.00010           |                             |                  |       | 20           |           |
| Reference (B1K26                 | 52-SRM1)                                |                     |                              | Prepared               | d: 2021-11-2        | 4, Analyze                  | d: 2021-1        | 1-24  |              |           |
| Aluminum, total                  |                                         | 0.200               | 0.0050 mg/L                  | 0.198                  |                     | 101                         | 70-130           |       |              |           |
| Antimony, total                  |                                         | 0.0256              | 0.00020 mg/L                 | 0.0230                 |                     | 111                         | 70-130           |       |              |           |
| Arsenic, total                   |                                         | 0.0200              | 0.00050 mg/L                 | 0.0200                 |                     | 100                         | 70-130           |       |              |           |
| Barium, total                    |                                         | 0.0171              | 0.0050 mg/L                  | 0.0161                 |                     | 106                         | 70-130           |       |              |           |
| Beryllium, total                 |                                         | 0.00414             | 0.00010 mg/L                 | 0.00384                |                     | 108                         | 70-130           |       |              |           |
| Boron, total                     |                                         | 0.196               | 0.0500 mg/L                  | 0.191                  |                     | 103                         | 70-130           |       |              |           |
| Cadmium, total                   |                                         | 0.00388             | 0.000010 mg/L                | 0.00404                |                     | 96                          | 70-130           |       |              |           |
| Calcium, total                   |                                         | 1.12                | 0.20 mg/L                    | 0.938                  |                     | 119                         | 70-130           |       |              |           |
| Chromium, total                  |                                         | 0.0287              | 0.00050 mg/L                 | 0.0256                 |                     | 112                         | 70-130           |       |              |           |
| Cobalt, total Copper, total      |                                         | 0.0233<br>0.0330    | 0.00010 mg/L<br>0.00040 mg/L | 0.0214<br>0.0322       |                     | 109<br>102                  | 70-130<br>70-130 |       |              |           |
| Iron, total                      |                                         | 0.062               | 0.010 mg/L                   | 0.0522                 |                     | 106                         | 70-130           |       |              |           |
| Lead, total                      |                                         | 0.00913             | 0.00020 mg/L                 | 0.00796                |                     | 115                         | 70-130           |       |              |           |
| Lithium, total                   |                                         | 0.0118              | 0.00010 mg/L                 | 0.0102                 |                     | 116                         | 70-130           |       |              |           |
| Magnesium, total                 |                                         | 0.131               | 0.010 mg/L                   | 0.112                  |                     | 117                         | 70-130           |       |              |           |
| Manganese, total                 |                                         | 0.0119              | 0.00020 mg/L                 | 0.0120                 |                     | 99                          | 70-130           |       |              |           |
| Molybdenum, total                |                                         | 0.0486              | 0.00010 mg/L                 | 0.0438                 |                     | 111                         | 70-130           |       |              |           |
| Nickel, total                    |                                         | 0.0443              | 0.00040 mg/L                 | 0.0394                 |                     | 113                         | 70-130           |       |              |           |
| Potassium, total                 |                                         | 0.89                | 0.10 mg/L                    | 0.820                  |                     | 108                         | 70-130           |       |              |           |
| Selenium, total                  |                                         | 0.118               | 0.00050 mg/L                 | 0.117                  |                     | 100                         | 70-130           |       |              |           |
| Sodium, total                    |                                         | 0.55                | 0.10 mg/L                    | 0.490                  |                     | 111                         | 70-130           |       |              |           |
| Strontium, total Thallium, total |                                         | 0.269<br>0.0121     | 0.0010 mg/L<br>0.000020 mg/L | 0.276<br>0.0118        |                     | 98<br>102                   | 70-130<br>70-130 |       |              |           |
| Uranium, total                   |                                         | 0.00986             | 0.000020 mg/L                | 0.00970                |                     | 102                         | 70-130           |       |              |           |
| Vanadium, total                  |                                         | 0.0308              | 0.00020 mg/L                 | 0.00370                |                     | 112                         | 70-130           |       |              |           |
| Zinc, total                      |                                         | 0.0934              | 0.0040 mg/L                  | 0.0884                 |                     | 106                         | 70-130           |       |              |           |
| Reference (B1K26                 | 52-SRM2)                                |                     |                              |                        | d: 2021-11-2        | 4. Analvze                  |                  | 1-24  |              |           |
| Aluminum, total                  | ,                                       | 0.209               | 0.0050 mg/L                  | 0.198                  |                     | 105                         | 70-130           |       |              |           |
| Antimony, total                  |                                         | 0.0264              | 0.00000 mg/L                 | 0.0230                 |                     | 115                         | 70-130           |       |              |           |
| Arsenic, total                   |                                         | 0.0204              | 0.00050 mg/L                 | 0.0200                 |                     | 102                         | 70-130           |       |              |           |
| Barium, total                    |                                         | 0.0167              | 0.0050 mg/L                  | 0.0161                 |                     | 104                         | 70-130           |       |              |           |
| Beryllium, total                 |                                         | 0.00449             | 0.00010 mg/L                 | 0.00384                |                     | 117                         | 70-130           |       |              |           |
| Boron, total                     |                                         | 0.207               | 0.0500 mg/L                  | 0.191                  |                     | 108                         | 70-130           |       |              |           |
| Cadmium, total                   |                                         | 0.00403             | 0.000010 mg/L                | 0.00404                |                     | 100                         | 70-130           |       |              |           |
| Calcium, total                   |                                         | 1.16                | 0.20 mg/L                    | 0.938                  |                     | 124                         | 70-130           |       |              |           |
| Chromium, total                  |                                         | 0.0297              | 0.00050 mg/L                 | 0.0256                 |                     | 116                         | 70-130           |       |              |           |
| Cobalt, total                    |                                         | 0.0240              | 0.00010 mg/L                 | 0.0214                 |                     | 112                         | 70-130           |       |              |           |
| Copper, total Iron, total        |                                         | 0.0341<br>0.061     | 0.00040 mg/L<br>0.010 mg/L   | 0.0322                 |                     | 106<br>106                  | 70-130<br>70-130 |       |              |           |
| Lead, total                      |                                         | 0.0103              | 0.00020 mg/L                 | 0.0580                 |                     | 129                         | 70-130           |       |              |           |
| Loau, iolai                      |                                         | 0.0103              | 0.000ZU IIIg/L               | 0.00780                |                     | 123                         | 7 0- 130         |       | Pa           | ge 27 of  |



REPORTED TOGolder Associates Ltd. (Kelowna)WORK ORDER21K2544PROJECTKeddleston Ph. 2 G W StudyREPORTED2022-01-20 13:52

| Analyte                                | Result | RL Units      | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
|----------------------------------------|--------|---------------|----------------|------------------|------------|--------------|-------|--------------|-----------|
| Total Metals, Batch B1K2652, Continued |        |               |                |                  |            |              |       |              |           |
| Reference (B1K2652-SRM2), Continued    |        |               | Prepared       | : 2021-11-2      | 4, Analyze | d: 2021-1    | 1-24  |              |           |
| Lithium, total                         | 0.0124 | 0.00010 mg/L  | 0.0102         |                  | 122        | 70-130       |       |              |           |
| Magnesium, total                       | 0.132  | 0.010 mg/L    | 0.112          |                  | 118        | 70-130       |       |              |           |
| Manganese, total                       | 0.0124 | 0.00020 mg/L  | 0.0120         |                  | 103        | 70-130       |       |              |           |
| Molybdenum, total                      | 0.0497 | 0.00010 mg/L  | 0.0438         |                  | 113        | 70-130       |       |              |           |
| Nickel, total                          | 0.0476 | 0.00040 mg/L  | 0.0394         |                  | 121        | 70-130       |       |              |           |
| Potassium, total                       | 0.91   | 0.10 mg/L     | 0.820          |                  | 111        | 70-130       |       |              |           |
| Selenium, total                        | 0.121  | 0.00050 mg/L  | 0.117          |                  | 104        | 70-130       |       |              |           |
| Sodium, total                          | 0.55   | 0.10 mg/L     | 0.490          |                  | 113        | 70-130       |       |              |           |
| Strontium, total                       | 0.277  | 0.0010 mg/L   | 0.276          |                  | 100        | 70-130       |       |              |           |
| Thallium, total                        | 0.0126 | 0.000020 mg/L | 0.0118         |                  | 107        | 70-130       |       |              |           |
| Uranium, total                         | 0.0102 | 0.000020 mg/L | 0.00970        |                  | 106        | 70-130       |       |              |           |
| Vanadium, total                        | 0.0326 | 0.0010 mg/L   | 0.0274         |                  | 119        | 70-130       |       |              |           |
| Zinc, total                            | 0.0984 | 0.0040 mg/L   | 0.0884         |                  | 111        | 70-130       |       |              |           |

#### QC Qualifiers:

BLK Analyte concentration in the Method Blank is above the Reporting Limit (RL).

# CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST

NO. 12399 page of 20 y Name: CARO - Kelowna 20 of 4 102 - 3677 Huy 972 Page Laboratory Name: CARD — Kelowing Telephone/Fax: 3119846 Golder E-mail/Address 2: @golder.com Keddleston Ph. 2 G W Strong paradi @golder.com Olivia - Kirby 0.0 Project Number: 20144760 Golder E-mail Address 1: pathanas

UZ YI Remarks (over) 1 2/2/2m Company Date 18 Nov 21 Received by: Signature Analyses Required: Received for Lab by:

RU/C Lun Date Way 18/2021 Time 4:20 Number of Containers Other Coln Drin King Unter Quel Related (over) SCN Sample QAQC (over) Service Constitution of the constitution of th Code Waybill No.: 12 WPM G/Wats 18/11/21/10:30 M GNOSTA GNOTE. Chrom Chrom 1.5% CNUE (over) Quote No.: 481912 Type EQuIS Facility Code: \_ EQuIS upload: □ 12:45 PM 3:45 (HH:MM) Sampled Time 1/3 10 (D/M/Y) Sampled Relinquished by. Signature Date Method of Shipment: 48 hr BC Water Quality Sample Sample Matrix (over) M 3 Depth (m) 1 Fax (604) 298-5253 Vancouver, British Columbia, Canada V5M 0C4 Note: Final Reports to be issued by e-mail Golder Kelowa Sa. # 1 CCME Sampler's Signature. - 05 WENEUS Location 00 Sample Turnáround Time: ☐ 24 hr Criteria: ☐ CSR ☐ C Telephone (604) 296-4200 200 - 2920 Virtual Way - 04 02 03 90 -000 12 0399-01 - 07 60 100 17 Sample Control Number (SCN) Office Name: 13399 3399 3399 2399 Comments

YELLOW: Lab Copy WHITE: Golder Copy

Time

Date

Cooler opened by:

Temp (°C)

Shipment Condition:

Shipped by:

Seal Intact:





#### **CERTIFICATE OF ANALYSIS**

**REPORTED TO** Golder Associates Ltd. (Kelowna)

590 McKay Avenue, Suite 300

Kelowna, BC V1Y 5A8

**ATTENTION** Pana Athanasopoulos

**PO NUMBER** 20144760 **PROJECT** 20144760

PROJECT INFO Keddleston

WORK ORDER 21L0506

**RECEIVED / TEMP** 2021-12-02 16:49 / 11.9°C

**REPORTED** 2022-01-19 11:53

COC NUMBER 12406

#### Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

·\

We've Got Chemistry



Ahead of the Curve



You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

more vou It's simple. We figure the enjoy with fun and working our engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at nyipp@caro.ca

**Authorized By:** 

Nicole Yipp Client Service Team Lead Vicole Sipp



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER

21L0506

**REPORTED** 2022-01-19 11:53

| Analyte                              | Result                 | Guideline      | RL       | Units | Analyzed           | Qualifie  |
|--------------------------------------|------------------------|----------------|----------|-------|--------------------|-----------|
| 12406-01 - 180 (21L0506-01)   Matrix | : Water   Sampled: 202 | 21-12-02 12:15 |          |       |                    | F2        |
| Anions                               |                        |                |          |       |                    |           |
| Bromide                              | < 0.10                 | N/A            | 0.10     | mg/L  | 2021-12-03         |           |
| Chloride                             | 1.35                   | AO ≤ 250       | 0.10     | mg/L  | 2021-12-03         |           |
| Fluoride                             | 1.19                   | MAC = 1.5      | 0.10     | mg/L  | 2021-12-03         |           |
| Nitrate (as N)                       | < 0.010                | MAC = 10       | 0.010    | mg/L  | 2021-12-03         |           |
| Nitrite (as N)                       | < 0.010                | MAC = 1        | 0.010    | mg/L  | 2021-12-03         |           |
| Sulfate                              | 410                    | AO ≤ 500       | 1.0      | mg/L  | 2021-12-03         |           |
| Calculated Parameters                |                        |                |          |       |                    |           |
| Hardness, Total (as CaCO3)           | 620                    | None Required  | 0.500    | mg/L  | N/A                |           |
| Nitrate+Nitrite (as N)               | < 0.0100               | N/A            | 0.0100   | mg/L  | N/A                |           |
| Nitrogen, Total                      | 0.155                  | N/A            | 0.0500   | mg/L  | N/A                |           |
| Dissolved Metals                     |                        |                |          |       |                    |           |
| Aluminum, dissolved                  | < 0.0050               | N/A            | 0.0050   | mg/L  | 2021-12-08         |           |
| Antimony, dissolved                  | < 0.00020              | N/A            | 0.00020  |       | 2021-12-08         |           |
| Arsenic, dissolved                   | < 0.00050              | N/A            | 0.00050  |       | 2021-12-08         |           |
| Barium, dissolved                    | 0.0150                 | N/A            | 0.0050   | mg/L  | 2021-12-08         |           |
| Beryllium, dissolved                 | < 0.00010              | N/A            | 0.00010  |       | 2021-12-08         |           |
| Bismuth, dissolved                   | < 0.00010              | N/A            | 0.00010  |       | 2021-12-08         |           |
| Boron, dissolved                     | < 0.0500               | N/A            | 0.0500   | mg/L  | 2021-12-08         |           |
| Cadmium, dissolved                   | 0.000041               | N/A            | 0.000010 | mg/L  | 2021-12-08         |           |
| Calcium, dissolved                   | 115                    | N/A            | 0.20     | mg/L  | 2021-12-08         |           |
| Chromium, dissolved                  | < 0.00050              | N/A            | 0.00050  | mg/L  | 2021-12-08         |           |
| Cobalt, dissolved                    | 0.00071                | N/A            | 0.00010  | mg/L  | 2021-12-08         |           |
| Copper, dissolved                    | 0.00201                | N/A            | 0.00040  | mg/L  | 2021-12-08         |           |
| Iron, dissolved                      | 0.098                  | N/A            | 0.010    | mg/L  | 2021-12-08         |           |
| Lead, dissolved                      | 0.00025                | N/A            | 0.00020  | mg/L  | 2021-12-08         |           |
| Lithium, dissolved                   | 0.238                  | N/A            | 0.00010  | mg/L  | 2021-12-08         |           |
| Magnesium, dissolved                 | 80.9                   | N/A            | 0.010    | mg/L  | 2021-12-08         |           |
| Manganese, dissolved                 | 0.128                  | N/A            | 0.00020  | mg/L  | 2021-12-08         |           |
| Mercury, dissolved                   | < 0.000010             | N/A            | 0.000010 | mg/L  | 2021-12-09         |           |
| Molybdenum, dissolved                | 0.00332                | N/A            | 0.00010  | mg/L  | 2021-12-08         |           |
| Nickel, dissolved                    | 0.00326                | N/A            | 0.00040  | mg/L  | 2021-12-08         |           |
| Phosphorus, dissolved                | < 0.050                | N/A            | 0.050    | mg/L  | 2021-12-08         |           |
| Potassium, dissolved                 | 12.2                   | N/A            | 0.10     | mg/L  | 2021-12-08         |           |
| Selenium, dissolved                  | < 0.00050              | N/A            | 0.00050  | mg/L  | 2021-12-08         |           |
| Silicon, dissolved                   | 9.8                    | N/A            | 1.0      | mg/L  | 2021-12-08         |           |
| Silver, dissolved                    | < 0.000050             | N/A            | 0.000050 | mg/L  | 2021-12-08         |           |
| Sodium, dissolved                    | 110                    | N/A            |          | mg/L  | 2021-12-08         |           |
| Strontium, dissolved                 | 3.54                   | N/A            | 0.0010   |       | 2021-12-08         |           |
| Sulfur, dissolved                    | 187                    | N/A            |          | mg/L  | 2021-12-08         |           |
| Tellurium, dissolved                 | < 0.00050              | N/A            | 0.00050  |       | 2021-12-08         |           |
| Thallium, dissolved                  | < 0.000020             | N/A            | 0.000020 |       | 2021-12-08         |           |
| Thorium, dissolved                   | < 0.00010              | N/A            | 0.00010  | mg/L  | 2021-12- <u>08</u> | Page 2 of |



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

Cobalt, total

Copper, total

Iron, total

WORK ORDER REPORTED

21L0506 2022-01-19 11:53

| Analyte                                  | Result             | Guideline           | RL       | Units      | Analyzed        | Qualifie |
|------------------------------------------|--------------------|---------------------|----------|------------|-----------------|----------|
| 12406-01 - 180 (21L0506-01)   Matrix: Wa | ter   Sampled: 202 | 21-12-02 12:15, Con | tinued   |            |                 | F2       |
| Dissolved Metals, Continued              |                    |                     |          |            |                 |          |
| Tin, dissolved                           | < 0.00020          | N/A                 | 0.00020  | mg/L       | 2021-12-08      |          |
| Titanium, dissolved                      | < 0.0050           | N/A                 | 0.0050   | mg/L       | 2021-12-08      |          |
| Tungsten, dissolved                      | < 0.0010           | N/A                 | 0.0010   | mg/L       | 2021-12-08      |          |
| Uranium, dissolved                       | 0.00470            | N/A                 | 0.000020 | mg/L       | 2021-12-08      |          |
| Vanadium, dissolved                      | < 0.0010           | N/A                 | 0.0010   | mg/L       | 2021-12-08      |          |
| Zinc, dissolved                          | 0.0362             | N/A                 | 0.0040   | mg/L       | 2021-12-08      |          |
| Zirconium, dissolved                     | < 0.00010          | N/A                 | 0.00010  | mg/L       | 2021-12-08      |          |
| General Parameters                       |                    |                     |          |            |                 |          |
| Alkalinity, Total (as CaCO3)             | 394                | N/A                 | 1.0      | mg/L       | 2021-12-06      |          |
| Alkalinity, Phenolphthalein (as CaCO3)   | < 1.0              | N/A                 | 1.0      | mg/L       | 2021-12-06      |          |
| Alkalinity, Bicarbonate (as CaCO3)       | 394                | N/A                 | 1.0      | mg/L       | 2021-12-06      |          |
| Alkalinity, Carbonate (as CaCO3)         | < 1.0              | N/A                 | 1.0      | mg/L       | 2021-12-06      |          |
| Alkalinity, Hydroxide (as CaCO3)         | < 1.0              | N/A                 | 1.0      | mg/L       | 2021-12-06      |          |
| Ammonia, Total (as N)                    | 0.056              | None Required       | 0.050    | mg/L       | 2021-12-07      |          |
| Conductivity (EC)                        | 1340               | N/A                 | 2.0      | μS/cm      | 2021-12-06      |          |
| Nitrogen, Total Kjeldahl                 | 0.155              | N/A                 | 0.050    | mg/L       | 2021-12-07      |          |
| pH                                       | 7.78               | 7.0-10.5            | 0.10     | pH units   | 2021-12-06      | HT2      |
| Solids, Total Dissolved                  | 981                | AO ≤ 500            | 15       | mg/L       | 2021-12-07      |          |
| Turbidity                                | 0.72               | OG < 1              | 0.10     | NTU        | 2021-12-03      |          |
| Microbiological Parameters               |                    |                     |          |            |                 |          |
| Coliforms, Fecal                         | < 1                | N/A                 |          | MPN/100 mL | 2021-12-03      |          |
| Coliforms, Total                         | < 1                | MAC = 0             |          | MPN/100 mL | 2021-12-03      |          |
| E. coli                                  | < 1                | MAC = 0             |          | MPN/100 mL | 2021-12-03      |          |
| Miscellaneous Subcontracted Parameters   |                    |                     |          |            |                 |          |
| delta-18-O                               | -18.59             | N/A                 |          | per mil    | 2022-01-19      |          |
| delta-2-H                                | -142.5             | N/A                 |          | per mil    | 2022-01-19      |          |
| Total Metals                             |                    |                     |          |            |                 |          |
| Aluminum, total                          | 0.0219             | OG < 0.1            | 0.0050   | mg/L       | 2021-12-07      |          |
| Antimony, total                          | < 0.00020          | MAC = 0.006         | 0.00020  |            | 2021-12-07      |          |
| Arsenic, total                           | < 0.00050          | MAC = 0.01          | 0.00050  |            | 2021-12-07      |          |
| Barium, total                            | 0.0155             | MAC = 2             | 0.0050   |            | 2021-12-07      |          |
| Beryllium, total                         | < 0.00010          | N/A                 | 0.00010  |            | 2021-12-07      |          |
| Bismuth, total                           | < 0.00010          | N/A                 | 0.00010  |            | 2021-12-07      |          |
| Boron, total                             | < 0.0500           | MAC = 5             | 0.0500   |            | 2021-12-07      |          |
| Cadmium, total                           | 0.000027           | MAC = 0.005         | 0.000010 |            | 2021-12-07      |          |
| Calcium, total                           | 106                | None Required       |          | mg/L       | 2021-12-07      |          |
| Chromium, total                          | < 0.00050          | MAC = 0.05          | 0.00050  |            | 2021-12-07      |          |
| ,                                        |                    |                     |          | · 3· –     | · · <b>- ··</b> |          |

2021-12-07

2021-12-07

2021-12-07

N/A

MAC = 2

AO ≤ 0.3

0.00010 mg/L

0.00040 mg/L

0.010 mg/L

0.00067

0.00120

0.306



Nitrogen, Total

**Dissolved Metals**Aluminum, dissolved

**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER REPORTED 21L0506 2022-01-19 11:53

| Analyte                             | Result                  | Guideline           | RL       | Units | Analyzed   | Qualifi |
|-------------------------------------|-------------------------|---------------------|----------|-------|------------|---------|
| 2406-01 - 180 (21L0506-01)   Matrix | κ: Water   Sampled: 202 | 21-12-02 12:15, Con | tinued   |       |            | F2      |
| Fotal Metals, Continued             |                         |                     |          |       |            |         |
| Lead, total                         | 0.00040                 | MAC = 0.005         | 0.00020  | mg/L  | 2021-12-07 |         |
| Lithium, total                      | 0.242                   | N/A                 | 0.00010  | mg/L  | 2021-12-07 |         |
| Magnesium, total                    | 72.6                    | None Required       | 0.010    | mg/L  | 2021-12-07 |         |
| Manganese, total                    | 0.135                   | MAC = 0.12          | 0.00020  | mg/L  | 2021-12-07 |         |
| Mercury, total                      | < 0.000040              | MAC = 0.001         | 0.000040 | mg/L  | 2021-12-07 | CT5     |
| Molybdenum, total                   | 0.00338                 | N/A                 | 0.00010  | mg/L  | 2021-12-07 |         |
| Nickel, total                       | 0.00301                 | N/A                 | 0.00040  | mg/L  | 2021-12-07 |         |
| Phosphorus, total                   | < 0.050                 | N/A                 | 0.050    | mg/L  | 2021-12-07 |         |
| Potassium, total                    | 12.9                    | N/A                 | 0.10     | mg/L  | 2021-12-07 |         |
| Selenium, total                     | 0.00092                 | MAC = 0.05          | 0.00050  | mg/L  | 2021-12-07 |         |
| Silicon, total                      | 10.2                    | N/A                 | 1.0      | mg/L  | 2021-12-07 |         |
| Silver, total                       | < 0.000050              | None Required       | 0.000050 |       | 2021-12-07 |         |
| Sodium, total                       | 107                     | AO ≤ 200            |          | mg/L  | 2021-12-07 |         |
| Strontium, total                    | 3.66                    | MAC = 7             | 0.0010   |       | 2021-12-07 |         |
| Sulfur, total                       | 158                     | N/A                 |          | mg/L  | 2021-12-07 |         |
| Tellurium, total                    | 0.00052                 | N/A                 | 0.00050  |       | 2021-12-07 |         |
| Thallium, total                     | < 0.000020              | N/A                 | 0.000020 |       | 2021-12-07 |         |
| Thorium, total                      | < 0.00010               | N/A                 | 0.00010  |       | 2021-12-07 |         |
| Tin, total                          | < 0.00020               | N/A                 | 0.00020  |       | 2021-12-07 |         |
| Titanium, total                     | < 0.0050                | N/A                 | 0.0050   | mg/L  | 2021-12-07 |         |
| Tungsten, total                     | < 0.0010                | N/A                 | 0.0010   |       | 2021-12-07 |         |
| Uranium, total                      | 0.00508                 | MAC = 0.02          | 0.000020 |       | 2021-12-07 |         |
| Vanadium, total                     | < 0.0010                | N/A                 | 0.0010   |       | 2021-12-07 |         |
| Zinc, total                         | 0.0243                  | AO ≤ 5              | 0.0040   |       | 2021-12-07 |         |
| Zirconium, total                    | < 0.00010               | N/A                 | 0.00010  |       | 2021-12-07 |         |
| 2406-02 - SMWeII 2 (21L0506-02)     | Matrix: Water   Sample  | d: 2021-12-02 13:45 | 5        |       |            | F2      |
| Anions                              |                         |                     |          |       |            |         |
| Bromide                             | < 0.10                  | N/A                 | 0.10     | mg/L  | 2021-12-03 |         |
| Chloride                            | 2.90                    | AO ≤ 250            |          | mg/L  | 2021-12-03 |         |
| Fluoride                            | 3.39                    | MAC = 1.5           |          | mg/L  | 2021-12-03 |         |
| Nitrate (as N)                      | < 0.010                 | MAC = 10            | 0.010    |       | 2021-12-03 |         |
| Nitrite (as N)                      | < 0.010                 | MAC = 1             | 0.010    | mg/L  | 2021-12-03 |         |
| Sulfate                             | 157                     | AO ≤ 500            |          | mg/L  | 2021-12-03 |         |
| Calculated Parameters               |                         |                     |          |       |            |         |
| Hardness, Total (as CaCO3)          | 171                     | None Required       | 0.500    | mg/L  | N/A        |         |
| Nitrate+Nitrite (as N)              | < 0.0100                | N/A                 | 0.0100   |       | N/A        |         |
| T 1 1                               |                         |                     |          |       |            |         |

N/A

2021-12-08

N/A

N/A

0.0500 mg/L

0.0050 mg/L

0.0900

< 0.0050



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER REPORTED 21L0506 2022-01-19 11:53

| Analyto                                 | Result             | Guideline          | DI           | Units | Analyzod   | Qualifie |
|-----------------------------------------|--------------------|--------------------|--------------|-------|------------|----------|
| Analyte                                 | Result             | Guideline          | - KL         | Units | Analyzed   | Qualific |
| 2406-02 - SMWell 2 (21L0506-02)   Matri | x: Water   Sampled | l: 2021-12-02 13:4 | 5, Continued |       |            | F2       |
| Dissolved Metals, Continued             |                    |                    |              |       |            |          |
| Antimony, dissolved                     | < 0.00020          | N/A                | 0.00020      | mg/L  | 2021-12-08 |          |
| Arsenic, dissolved                      | < 0.00050          | N/A                | 0.00050      | mg/L  | 2021-12-08 |          |
| Barium, dissolved                       | 0.0212             | N/A                | 0.0050       | mg/L  | 2021-12-08 |          |
| Beryllium, dissolved                    | < 0.00010          | N/A                | 0.00010      | mg/L  | 2021-12-08 |          |
| Bismuth, dissolved                      | < 0.00010          | N/A                | 0.00010      | mg/L  | 2021-12-08 |          |
| Boron, dissolved                        | < 0.0500           | N/A                | 0.0500       | mg/L  | 2021-12-08 |          |
| Cadmium, dissolved                      | 0.000130           | N/A                | 0.000010     | mg/L  | 2021-12-08 |          |
| Calcium, dissolved                      | 36.3               | N/A                | 0.20         | mg/L  | 2021-12-08 |          |
| Chromium, dissolved                     | < 0.00050          | N/A                | 0.00050      | mg/L  | 2021-12-08 |          |
| Cobalt, dissolved                       | < 0.00010          | N/A                | 0.00010      | mg/L  | 2021-12-08 |          |
| Copper, dissolved                       | 0.00287            | N/A                | 0.00040      | mg/L  | 2021-12-08 |          |
| Iron, dissolved                         | < 0.010            | N/A                | 0.010        | mg/L  | 2021-12-08 |          |
| Lead, dissolved                         | 0.00345            | N/A                | 0.00020      | mg/L  | 2021-12-08 |          |
| Lithium, dissolved                      | 0.0740             | N/A                | 0.00010      | mg/L  | 2021-12-08 |          |
| Magnesium, dissolved                    | 19.5               | N/A                | 0.010        | mg/L  | 2021-12-08 |          |
| Manganese, dissolved                    | 0.00466            | N/A                | 0.00020      | mg/L  | 2021-12-08 |          |
| Mercury, dissolved                      | < 0.000010         | N/A                | 0.000010     | mg/L  | 2021-12-09 |          |
| Molybdenum, dissolved                   | 0.00413            | N/A                | 0.00010      | mg/L  | 2021-12-08 |          |
| Nickel, dissolved                       | 0.00320            | N/A                | 0.00040      | mg/L  | 2021-12-08 |          |
| Phosphorus, dissolved                   | < 0.050            | N/A                | 0.050        | mg/L  | 2021-12-08 |          |
| Potassium, dissolved                    | 1.25               | N/A                | 0.10         | mg/L  | 2021-12-08 |          |
| Selenium, dissolved                     | < 0.00050          | N/A                | 0.00050      | mg/L  | 2021-12-08 |          |
| Silicon, dissolved                      | 6.4                | N/A                | 1.0          | mg/L  | 2021-12-08 |          |
| Silver, dissolved                       | < 0.000050         | N/A                | 0.000050     | mg/L  | 2021-12-08 |          |
| Sodium, dissolved                       | 149                | N/A                | 0.10         | mg/L  | 2021-12-08 |          |
| Strontium, dissolved                    | 1.76               | N/A                | 0.0010       | mg/L  | 2021-12-08 |          |
| Sulfur, dissolved                       | 67.0               | N/A                | 3.0          | mg/L  | 2021-12-08 |          |
| Tellurium, dissolved                    | < 0.00050          | N/A                | 0.00050      | mg/L  | 2021-12-08 |          |
| Thallium, dissolved                     | < 0.000020         | N/A                | 0.000020     | mg/L  | 2021-12-08 |          |
| Thorium, dissolved                      | < 0.00010          | N/A                | 0.00010      | mg/L  | 2021-12-08 |          |
| Tin, dissolved                          | < 0.00020          | N/A                | 0.00020      | mg/L  | 2021-12-08 |          |
| Titanium, dissolved                     | < 0.0050           | N/A                | 0.0050       | mg/L  | 2021-12-08 |          |
| Tungsten, dissolved                     | < 0.0010           | N/A                | 0.0010       | mg/L  | 2021-12-08 |          |
| Uranium, dissolved                      | 0.000737           | N/A                | 0.000020     | mg/L  | 2021-12-08 |          |
| Vanadium, dissolved                     | < 0.0010           | N/A                | 0.0010       | mg/L  | 2021-12-08 |          |
| Zinc, dissolved                         | 1.79               | N/A                | 0.0040       | mg/L  | 2021-12-08 |          |
| Zirconium, dissolved                    | < 0.00010          | N/A                | 0.00010      | mg/L  | 2021-12-08 |          |
| General Parameters                      |                    |                    |              |       |            |          |
| Alkalinity, Total (as CaCO3)            | 320                | N/A                | 1.0          | mg/L  | 2021-12-06 |          |
| Alkalinity, Phenolphthalein (as CaCO3)  | < 1.0              | N/A                | 1.0          | mg/L  | 2021-12-06 |          |
| Alkalinity, Bicarbonate (as CaCO3)      | 320                | N/A                | 1.0          | mg/L  | 2021-12-06 |          |
| Alkalinity, Carbonate (as CaCO3)        | < 1.0              | N/A                | 1.0          | mg/L  | 2021-12-06 |          |



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

| WORK ORDER | 21L0506          |
|------------|------------------|
| REPORTED   | 2022-01-19 11:53 |

| Analyte                                | Result                | Guideline           | RL           | Units      | Analyzed   | Qualifie |
|----------------------------------------|-----------------------|---------------------|--------------|------------|------------|----------|
| 12406-02 - SMWell 2 (21L0506-02)   M   | atrix: Water   Sample | d: 2021-12-02 13:45 | i, Continued |            |            | F2       |
| General Parameters, Continued          |                       |                     |              |            |            |          |
| Alkalinity, Hydroxide (as CaCO3)       | < 1.0                 | N/A                 | 1.0          | mg/L       | 2021-12-06 |          |
| Ammonia, Total (as N)                  | < 0.050               | None Required       | 0.050        | mg/L       | 2021-12-07 |          |
| Conductivity (EC)                      | 837                   | N/A                 | 2.0          | μS/cm      | 2021-12-06 |          |
| Nitrogen, Total Kjeldahl               | 0.090                 | N/A                 | 0.050        | •          | 2021-12-07 |          |
| pH                                     | 7.95                  | 7.0-10.5            | 0.10         | pH units   | 2021-12-06 | HT2      |
| Solids, Total Dissolved                | 558                   | AO ≤ 500            | 15           | mg/L       | 2021-12-07 |          |
| Turbidity                              | 0.55                  | OG < 1              |              | NTU        | 2021-12-03 |          |
| licrobiological Parameters             |                       |                     |              |            |            |          |
| Coliforms, Fecal                       | < 1                   | N/A                 |              | MPN/100 mL | 2021-12-03 |          |
| Coliforms, Total                       | < 1                   | MAC = 0             |              | MPN/100 mL | 2021-12-03 |          |
| E. coli                                | < 1                   | MAC = 0             |              | MPN/100 mL | 2021-12-03 |          |
| liscellaneous Subcontracted Parameters | <b>S</b>              |                     |              |            |            |          |
| delta-18-O                             | -18.67                | N/A                 |              | per mil    | 2022-01-19 |          |
| delta-2-H                              | -142.7                | N/A                 |              | per mil    | 2022-01-19 |          |
| otal Metals                            |                       |                     |              |            |            |          |
| Aluminum, total                        | 0.0062                | OG < 0.1            | 0.0050       | mg/L       | 2021-12-07 |          |
| Antimony, total                        | < 0.00020             | MAC = 0.006         | 0.00020      | mg/L       | 2021-12-07 |          |
| Arsenic, total                         | < 0.00050             | MAC = 0.01          | 0.00050      |            | 2021-12-07 |          |
| Barium, total                          | 0.0236                | MAC = 2             | 0.0050       |            | 2021-12-07 |          |
| Beryllium, total                       | < 0.00010             | N/A                 | 0.00010      |            | 2021-12-07 |          |
| Bismuth, total                         | < 0.00010             | N/A                 | 0.00010      |            | 2021-12-07 |          |
| Boron, total                           | < 0.0500              | MAC = 5             | 0.0500       |            | 2021-12-07 |          |
| Cadmium, total                         | 0.000172              | MAC = 0.005         | 0.000010     | mg/L       | 2021-12-07 |          |
| Calcium, total                         | 37.7                  | None Required       | 0.20         | mg/L       | 2021-12-07 |          |
| Chromium, total                        | < 0.00050             | MAC = 0.05          | 0.00050      |            | 2021-12-07 |          |
| Cobalt, total                          | < 0.00010             | N/A                 | 0.00010      |            | 2021-12-07 |          |
| Copper, total                          | 0.0234                | MAC = 2             | 0.00040      | mg/L       | 2021-12-07 |          |
| Iron, total                            | 0.058                 | AO ≤ 0.3            | 0.010        |            | 2021-12-07 |          |
| Lead, total                            | 0.00820               | MAC = 0.005         | 0.00020      |            | 2021-12-07 |          |
| Lithium, total                         | 0.0831                | N/A                 | 0.00010      |            | 2021-12-07 |          |
| Magnesium, total                       | 20.6                  | None Required       | 0.010        |            | 2021-12-07 |          |
| Manganese, total                       | 0.00496               | MAC = 0.12          | 0.00020      |            | 2021-12-07 |          |
| Mercury, total                         | < 0.000040            | MAC = 0.001         | 0.000040     |            | 2021-12-07 | CT5      |
| Molybdenum, total                      | 0.00473               | N/A                 | 0.00010      |            | 2021-12-07 |          |
| Nickel, total                          | 0.00366               | N/A                 | 0.00040      |            | 2021-12-07 |          |
| Phosphorus, total                      | < 0.050               | N/A                 | 0.050        |            | 2021-12-07 |          |
| Potassium, total                       | 1.44                  | N/A                 |              | mg/L       | 2021-12-07 |          |
| Selenium, total                        | 0.00076               | MAC = 0.05          | 0.00050      |            | 2021-12-07 |          |
| Silicon, total                         | 7.4                   | N/A                 |              | mg/L       | 2021-12-07 |          |
| Silver, total                          | < 0.000050            | None Required       | 0.000050     |            | 2021-12-07 |          |
| Sodium, total                          | 156                   | AO ≤ 200            |              | mg/L       | 2021-12-07 |          |
| .,                                     |                       |                     | 2.70         | - J. –     |            | Page 6   |



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER

21L0506

**REPORTED** 2022-01-19 11:53

| Analyte                         | Result                       | Guideline          | RL           | Units | Analyzed   | Qualifier |
|---------------------------------|------------------------------|--------------------|--------------|-------|------------|-----------|
| 12406-02 - SMWell 2 (21L0506-02 | 2)   Matrix: Water   Sampled | l: 2021-12-02 13:4 | 5, Continued |       |            | F2        |
| Total Metals, Continued         |                              |                    |              |       |            |           |
| Strontium, total                | 1.89                         | MAC = 7            | 0.0010       | mg/L  | 2021-12-07 |           |
| Sulfur, total                   | 63.6                         | N/A                | 3.0          | mg/L  | 2021-12-07 |           |
| Tellurium, total                | < 0.00050                    | N/A                | 0.00050      | mg/L  | 2021-12-07 |           |
| Thallium, total                 | < 0.000020                   | N/A                | 0.000020     | mg/L  | 2021-12-07 |           |
| Thorium, total                  | < 0.00010                    | N/A                | 0.00010      | mg/L  | 2021-12-07 |           |
| Tin, total                      | 0.00033                      | N/A                | 0.00020      | mg/L  | 2021-12-07 |           |
| Titanium, total                 | < 0.0050                     | N/A                | 0.0050       | mg/L  | 2021-12-07 |           |
| Tungsten, total                 | < 0.0010                     | N/A                | 0.0010       | mg/L  | 2021-12-07 |           |
| Uranium, total                  | 0.000922                     | MAC = 0.02         | 0.000020     | mg/L  | 2021-12-07 |           |
| Vanadium, total                 | < 0.0010                     | N/A                | 0.0010       | mg/L  | 2021-12-07 |           |
| Zinc, total                     | 1.47                         | AO ≤ 5             | 0.0040       | mg/L  | 2021-12-07 |           |
| Zirconium, total                | < 0.00010                    | N/A                | 0.00010      | mg/L  | 2021-12-07 |           |

#### Sample Qualifiers:

CT5 This sample has been incorrectly preserved for Mercury analysis

F2 The sample was not field-preserved with HNO3 and was therefore preserved in the laboratory and held for at least 16 hours prior to analysis for total metals.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.



#### APPENDIX 1: SUPPORTING INFORMATION

Golder Associates Ltd. (Kelowna) **REPORTED TO** 

20144760 **PROJECT** 

**WORK ORDER** 

21L0506

**REPORTED** 

2022-01-19 11:53

| Analysis Description               | Method Ref.               | Technique                                                                            | Accredited | Location |
|------------------------------------|---------------------------|--------------------------------------------------------------------------------------|------------|----------|
| 2H and 18O Isotope Ratios in Water | Stable Isotopes           | CRDS                                                                                 |            | Sublet   |
| Alkalinity in Water                | SM 2320 B* (2017)         | Titration with H2SO4                                                                 | ✓          | Kelowna  |
| Ammonia, Total in Water            | SM 4500-NH3 G*<br>(2017)  | Automated Colorimetry (Phenate)                                                      | ✓          | Kelowna  |
| Anions in Water                    | SM 4110 B (2017)          | Ion Chromatography                                                                   | ✓          | Kelowna  |
| Coliforms, Fecal in Water          | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Coliforms, Total in Water          | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Conductivity in Water              | SM 2510 B (2017)          | Conductivity Meter                                                                   | ✓          | Kelowna  |
| Dissolved Metals in Water          | EPA 200.8 / EPA 6020B     | 0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)           | ✓          | Richmond |
| E. coli in Water                   | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Hardness in Water                  | SM 2340 B (2017)          | Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]                                       | ✓          | N/A      |
| Mercury, dissolved in Water        | EPA 245.7*                | BrCl2 Oxidation / Cold Vapor Atomic Fluorescence<br>Spectrometry (CVAFS)             | ✓          | Richmond |
| Nitrogen, Total Kjeldahl in Water  | SM 4500-Norg D*<br>(2017) | Block Digestion and Flow Injection Analysis                                          | ✓          | Kelowna  |
| pH in Water                        | SM 4500-H+ B (2017)       | Electrometry                                                                         | ✓          | Kelowna  |
| Solids, Total Dissolved in Water   | SM 2540 C* (2017)         | Gravimetry (Dried at 103-105C)                                                       | ✓          | Kelowna  |
| Total Metals in Water              | EPA 200.2 / EPA 6020B     | HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) | ✓          | Richmond |
| Turbidity in Water                 | SM 2130 B (2017)          | Nephelometry                                                                         | ✓          | Kelowna  |

#### **Glossary of Terms:**

RL Reporting Limit (default)

< Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

ΑO Aesthetic Objective

MAC Maximum Acceptable Concentration (health based)

Milligrams per litre mg/L

MPN/100 mL Most Probable Number per 100 millilitres

NTU Nephelometric Turbidity Units OG Operational Guideline (treated water)

per mil Parts per thousand

pH < 7 = acidic, ph > 7 = basicpH units μS/cm Microsiemens per centimetre

**EPA** United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

#### **Guidelines Referenced in this Report:**

Guidelines for Canadian Drinking Water Quality (Health Canada, June 2019)

Note: In some cases, the values displayed on the report represent the lowest guideline and are to be verified by the end user



#### **APPENDIX 1: SUPPORTING INFORMATION**

**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER

21L0506

**REPORTED** 2022-01-19 11:53

#### **General Comments:**

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted red. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:nyipp@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER REPORTED

21L0506 2022-01-19 11:53

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire
  analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte               | Result  | RL Units   | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
|-----------------------|---------|------------|----------------|------------------|-------------|--------------|-------|--------------|-----------|
| Anions, Batch B1L0434 |         |            |                |                  |             |              |       |              |           |
| Blank (B1L0434-BLK1)  |         |            | Prepared       | l: 2021-12-0     | )3, Analyze | d: 2021-1    | 12-03 |              |           |
| Bromide               | < 0.10  | 0.10 mg/L  |                |                  |             |              |       |              |           |
| Chloride              | < 0.10  | 0.10 mg/L  |                |                  |             |              |       |              |           |
| Fluoride              | < 0.10  | 0.10 mg/L  |                |                  |             |              |       |              |           |
| Nitrate (as N)        | < 0.010 | 0.010 mg/L |                |                  |             |              |       |              |           |
| Nitrite (as N)        | < 0.010 | 0.010 mg/L |                |                  |             |              |       |              |           |
| Sulfate               | < 1.0   | 1.0 mg/L   |                |                  |             |              |       |              |           |
| Blank (B1L0434-BLK2)  |         |            | Prepared       | l: 2021-12-0     | )3, Analyze | d: 2021-1    | 12-03 |              |           |
| Bromide               | < 0.10  | 0.10 mg/L  |                |                  |             |              |       |              |           |
| Chloride              | < 0.10  | 0.10 mg/L  |                |                  |             |              |       |              |           |
| Fluoride              | < 0.10  | 0.10 mg/L  |                |                  |             |              |       |              |           |
| Nitrate (as N)        | < 0.010 | 0.010 mg/L |                |                  |             |              |       |              |           |
| Nitrite (as N)        | < 0.010 | 0.010 mg/L |                |                  |             |              |       |              |           |
| Sulfate               | < 1.0   | 1.0 mg/L   |                |                  |             |              |       |              |           |
| LCS (B1L0434-BS1)     |         |            | Prepared       | l: 2021-12-0     | )3, Analyze | d: 2021-1    | 12-03 |              |           |
| Bromide               | 4.02    | 0.10 mg/L  | 4.00           |                  | 100         | 85-115       |       |              |           |
| Chloride              | 16.1    | 0.10 mg/L  | 16.0           |                  | 100         | 90-110       |       |              |           |
| Fluoride              | 3.95    | 0.10 mg/L  | 4.00           |                  | 99          | 88-108       |       |              |           |
| Nitrate (as N)        | 4.04    | 0.010 mg/L | 4.00           |                  | 101         | 90-110       |       |              |           |
| Nitrite (as N)        | 1.98    | 0.010 mg/L | 2.00           |                  | 99          | 85-115       |       |              |           |
| Sulfate               | 16.0    | 1.0 mg/L   | 16.0           |                  | 100         | 90-110       |       |              |           |
| LCS (B1L0434-BS2)     |         |            | Prepared       | l: 2021-12-0     | )3, Analyze | d: 2021-1    | 12-03 |              |           |
| Bromide               | 3.96    | 0.10 mg/L  | 4.00           |                  | 99          | 85-115       |       |              |           |
| Chloride              | 16.2    | 0.10 mg/L  | 16.0           |                  | 101         | 90-110       |       |              |           |
| Fluoride              | 3.92    | 0.10 mg/L  | 4.00           |                  | 98          | 88-108       |       |              |           |
| Nitrate (as N)        | 4.06    | 0.010 mg/L | 4.00           |                  | 102         | 90-110       |       |              |           |
| Nitrite (as N)        | 2.08    | 0.010 mg/L | 2.00           |                  | 104         | 85-115       |       |              |           |
| Sulfate               | 16.0    | 1.0 mg/L   | 16.0           |                  | 100         | 90-110       |       |              |           |

#### Dissolved Metals, Batch B1L0783

| Blank (B1L0783-BLK1) |           |              | Prepared: 2021-12-08, Analyzed: 2021-12-08 |       |
|----------------------|-----------|--------------|--------------------------------------------|-------|
| Aluminum, dissolved  | < 0.0050  | 0.0050 mg/L  |                                            |       |
| Antimony, dissolved  | < 0.00020 | 0.00020 mg/L |                                            |       |
|                      |           |              |                                            | 10 11 |



| Result   Result   RL Units   Spike   Level   Source   Result   % RP   Limit   Management   Ma | D RPD Qualific |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Arsenic, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| Arsenic, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| Barlum, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Beryllium, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Bismuth, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| Boron, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| Cadmium, dissolved         < 0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Calcium, dissolved   Co.000   Co.0000   Co.00000   Co.00000   Co.00000   Co.00000   Co.00000   Co.00000   Co.00000   Co.000000   Co.00000   Co.00000   Co.00000   Co.00000   Co.00000   Co.000000   Co.00000   Co.000000   Co.00000   Co.000000   Co.000000   Co.000000   Co.000000   Co.000000   Co.0000000   Co.000000   Co.000000   Co.000000   Co.000000   Co.000000000   Co.0000000   Co.0000000   Co.00000000   Co.00000000000   Co.000000000   Co.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| Chromium, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Cobalt, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Copper, dissolved         < 0.0010 0.00040 mg/L         co.010 mg/L         co.010 mg/L         co.010 mg/L         co.010 mg/L         co.010 mg/L         co.0020 mg/L         co.0020 mg/L         co.0010 mg/L         co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| Iron, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| Lead, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| Lithium, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| Magnesium, dissolved, dissolved         < 0.010         mg/L           Manganese, dissolved         < 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Molybdenum, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Nickel, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Phosphorus, dissolved         < 0.050         mg/L           Potassium, dissolved         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| Potassium, dissolved         < 0.10         0.10 mg/L           Selenium, dissolved         < 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Selenium, dissolved         < 0.00050         mg/L           Silicon, dissolved         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Silicon, dissolved       < 1.0 mg/L         Silver, dissolved       < 0.000050 0.000050 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| Silver, dissolved         < 0.000050         0.000050 mg/L           Sodium, dissolved         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Sodium, dissolved         < 0.10         0.10 mg/L           Strontium, dissolved         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| Strontium, dissolved         < 0.0010         0.0010 mg/L           Sulfur, dissolved         < 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Sulfur, dissolved         < 3.0         3.0 mg/L           Tellurium, dissolved         < 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Tellurium, dissolved < 0.00050 mg/L  Thallium, dissolved < 0.000020 0.000020 mg/L  Thorium, dissolved < 0.00010 0.00010 mg/L  Tin, dissolved < 0.00020 0.00020 mg/L  Titanium, dissolved < 0.00050 0.0050 mg/L  Titanium, dissolved < 0.0050 0.0050 mg/L  Tungsten, dissolved < 0.0010 0.0010 mg/L  Uranium, dissolved < 0.00020 0.00020 mg/L  Vanadium, dissolved < 0.00010 0.0010 mg/L  Zinc, dissolved < 0.0010 0.0010 mg/L  Zinc, dissolved < 0.00010 0.0000 mg/L  Zirconium, dissolved < 0.00010 0.00010 mg/L  Aluminum, dissolved 0.0184 0.0050 mg/L 0.0200 92 80-120  Antimony, dissolved 0.0189 0.00020 mg/L 0.0200 95 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Thallium, dissolved       < 0.000020       0.000020 mg/L         Thorium, dissolved       < 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Thorium, dissolved         < 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Tin, dissolved         < 0.00020         0.00020 mg/L           Titanium, dissolved         < 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Tungsten, dissolved         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Uranium, dissolved         < 0.000020         0.000020 mg/L           Vanadium, dissolved         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Vanadium, dissolved         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Zinc, dissolved         < 0.0040         0.0040 mg/L           Zirconium, dissolved         < 0.00010         0.00010 mg/L           LCS (B1L0783-BS1)         Prepared: 2021-12-08, Analyzed: 2021-12-08           Aluminum, dissolved         0.0184         0.0050 mg/L         0.0200         92         80-120           Antimony, dissolved         0.0189         0.00020 mg/L         0.0200         95         80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| Zirconium, dissolved         < 0.00010         mg/L           LCS (B1L0783-BS1)         Prepared: 2021-12-08, Analyzed: 2021-12-08           Aluminum, dissolved         0.0184         0.0050 mg/L         0.0200         92         80-120           Antimony, dissolved         0.0189         0.00020 mg/L         0.0200         95         80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| LCS (B1L0783-BS1)     Prepared: 2021-12-08, Analyzed: 2021-12-08       Aluminum, dissolved     0.0184     0.0050 mg/L     0.0200     92     80-120       Antimony, dissolved     0.0189     0.00020 mg/L     0.0200     95     80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Aluminum, dissolved         0.0184         0.0050 mg/L         0.0200         92         80-120           Antimony, dissolved         0.0189         0.00020 mg/L         0.0200         95         80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Aluminum, dissolved         0.0184         0.0050 mg/L         0.0200         92         80-120           Antimony, dissolved         0.0189         0.00020 mg/L         0.0200         95         80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Antimony, dissolved 0.0189 0.00020 mg/L 0.0200 95 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| Arsenic, dissolved 0.0203 0.00050 mg/L 0.0200 102 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| Barium, dissolved 0.0171 0.0050 mg/L 0.0200 85 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Beryllium, dissolved 0.0161 0.00010 mg/L 0.0200 81 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| Bismuth, dissolved 0.0190 0.00010 mg/L 0.0200 95 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| Boron, dissolved < 0.0500 0.0500 mg/L 0.0200 112 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| Cadmium, dissolved 0.0174 0.000010 mg/L 0.0200 87 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| Calcium, dissolved, dissolved 1.93 0.20 mg/L 2.00 97 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| Chromium, dissolved 0.0184 0.00050 mg/L 0.0200 92 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| Cobalt, dissolved 0.0186 0.00010 mg/L 0.0200 93 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Copper, dissolved 0.0180 0.00040 mg/L 0.0200 90 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Iron, dissolved         1.73         0.010 mg/L         2.00         86         80-120           Lead, dissolved         0.0184         0.00020 mg/L         0.0200         92         80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Lithium, dissolved 0.0174 0.00010 mg/L 0.0200 87 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| Magnesium, dissolved 1.97 0.010 mg/L 2.00 98 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Manganese, dissolved 0.0185 0.00020 mg/L 0.0200 92 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| Molybdenum, dissolved 0.0198 0.00010 mg/L 0.0200 99 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Nickel, dissolved 0.0186 0.00040 mg/L 0.0200 93 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |



| REPORTED TO PROJECT                    | Golder Associates<br>20144760 | Ltd. (Kelowna      | )                     |              |                |                  | WORK<br>REPOR | ORDER<br>TED     |          | )506<br>?-01-19 | 11:53     |
|----------------------------------------|-------------------------------|--------------------|-----------------------|--------------|----------------|------------------|---------------|------------------|----------|-----------------|-----------|
| Analyte                                |                               | Result             | RL                    | Units        | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit     | % RPD    | RPD<br>Limit    | Qualifier |
| Dissolved Metals,                      | Batch B1L0783, Cont           | inued              |                       |              |                |                  |               |                  |          |                 |           |
| LCS (B1L0783-BS                        | 1), Continued                 |                    |                       |              | Prepared       | : 2021-12-0      | 8, Analyze    | d: 2021-1        | 2-08     |                 |           |
| Phosphorus, dissolve                   | ed                            | 2.06               | 0.050                 | mg/L         | 2.00           |                  | 103           | 80-120           |          |                 |           |
| Potassium, dissolved                   |                               | 1.83               | 0.10                  | mg/L         | 2.00           |                  | 91            | 80-120           |          |                 |           |
| Selenium, dissolved                    |                               | 0.0189             | 0.00050               | mg/L         | 0.0200         |                  | 95            | 80-120           |          |                 |           |
| Silicon, dissolved                     |                               | 2.2                |                       | mg/L         | 2.00           |                  | 112           | 80-120           |          |                 |           |
| Silver, dissolved                      |                               | 0.0183             | 0.000050              | mg/L         | 0.0200         |                  | 92            | 80-120           |          |                 |           |
| Sodium, dissolved                      |                               | 1.93               |                       | mg/L         | 2.00           |                  | 96            | 80-120           |          |                 |           |
| Strontium, dissolved                   |                               | 0.0171             | 0.0010                |              | 0.0200         |                  | 86            | 80-120           |          |                 |           |
| Sulfur, dissolved                      |                               | 4.3                |                       | mg/L         | 5.00           |                  | 86            | 80-120           |          |                 |           |
| Tellurium, dissolved                   |                               | 0.0198             | 0.00050               |              | 0.0200         |                  | 99            | 80-120           |          |                 |           |
| Thallium, dissolved                    |                               | 0.0188             | 0.000020              |              | 0.0200         |                  | 94            | 80-120           |          |                 |           |
| Thorium, dissolved                     |                               | 0.0190             | 0.00010               |              | 0.0200         |                  | 95            | 80-120           |          |                 |           |
| Tin, dissolved                         |                               | 0.0203             | 0.00020               |              | 0.0200         |                  | 102           | 80-120           |          |                 |           |
| Titanium, dissolved                    |                               | 0.0221<br>0.0207   | 0.0050<br>0.0010      |              | 0.0200         |                  | 110<br>103    | 80-120<br>80-120 |          |                 |           |
| Tungsten, dissolved Uranium, dissolved |                               | 0.0207             | 0.000020              |              | 0.0200         |                  | 103           | 80-120           |          |                 |           |
| Vanadium, dissolved                    |                               | 0.0164             | 0.000020              |              | 0.0200         |                  | 82            | 80-120           |          |                 |           |
| Zinc, dissolved                        |                               | 0.0162             | 0.0010                |              | 0.0200         |                  | 81            | 80-120           |          |                 |           |
| Zirconium, dissolved                   |                               | 0.0199             | 0.00010               |              | 0.0200         |                  | 99            | 80-120           |          |                 |           |
|                                        | 2 DUD4)                       |                    |                       |              |                | : 2021-12-0      |               |                  | 12.08    |                 |           |
| Aluminum, dissolved                    | 3-DUF1)                       | < 0.0050           | ource: 21L0<br>0.0050 |              | Перагеи        | < 0.0050         | o, Analyze    | u. 2021-         | 12-00    | 20              |           |
| Antimony, dissolved                    |                               | < 0.00020          | 0.00020               |              |                | < 0.00020        |               |                  |          | 20              |           |
| Arsenic, dissolved                     |                               | < 0.00050          | 0.00050               |              |                | < 0.00050        |               |                  |          | 20              |           |
| Barium, dissolved                      |                               | 0.0207             | 0.0050                |              |                | 0.0150           |               |                  |          | 20              |           |
| Beryllium, dissolved                   |                               | < 0.00010          | 0.00010               |              |                | < 0.00010        |               |                  |          | 20              |           |
| Bismuth, dissolved                     |                               | < 0.00010          | 0.00010               |              |                | < 0.00010        |               |                  |          | 20              |           |
| Boron, dissolved                       |                               | < 0.0500           | 0.0500                | mg/L         |                | < 0.0500         |               |                  |          | 20              |           |
| Cadmium, dissolved                     |                               | 0.000043           | 0.000010              | mg/L         |                | 0.000041         |               |                  |          | 20              |           |
| Calcium, dissolved, d                  | issolved                      | 113                | 0.20                  | mg/L         |                | 115              |               |                  | 2        | 20              |           |
| Chromium, dissolved                    |                               | < 0.00050          | 0.00050               | mg/L         |                | < 0.00050        |               |                  |          | 20              |           |
| Cobalt, dissolved                      |                               | 0.00070            | 0.00010               |              |                | 0.00071          |               |                  | < 1      | 20              |           |
| Copper, dissolved                      |                               | 0.00204            | 0.00040               |              |                | 0.00201          |               |                  | 2        | 20              |           |
| Iron, dissolved                        |                               | 0.098              |                       | mg/L         |                | 0.098            |               |                  | < 1      | 20              |           |
| Lead, dissolved                        |                               | 0.00025            | 0.00020               |              |                | 0.00025          |               |                  |          | 20              |           |
| Lithium, dissolved                     |                               | 0.236              | 0.00010               |              |                | 0.238            |               |                  | 1        | 20              |           |
| Magnesium, dissolve                    | <u>'</u>                      | 79.7               |                       | mg/L         |                | 80.9             |               |                  | 1        | 20              |           |
| Manganese, dissolve                    |                               | 0.125              | 0.00020               |              |                | 0.128            |               |                  | 2        | 20              |           |
| Molybdenum, dissolved                  | eu                            | 0.00336<br>0.00339 | 0.00010<br>0.00040    |              |                | 0.00332          |               |                  | <u> </u> | 20              |           |
| Nickel, dissolved Phosphorus, dissolve | nd                            | < 0.050            |                       | mg/L<br>mg/L |                | < 0.050          |               |                  | 4        | 20              |           |
| Potassium, dissolved                   |                               | 12.1               |                       | mg/L         |                | 12.2             |               |                  | 1        | 20              |           |
| Selenium, dissolved                    |                               | < 0.00050          | 0.00050               |              |                | < 0.00050        |               |                  | 1        | 20              |           |
| Silicon, dissolved                     |                               | 9.6                |                       | mg/L         |                | 9.8              |               |                  | 3        | 20              |           |
| Silver, dissolved                      |                               | < 0.000050         | 0.000050              |              |                | < 0.000050       |               |                  |          | 20              |           |
| Sodium, dissolved                      |                               | 108                |                       | mg/L         |                | 110              |               |                  | 2        | 20              |           |
| Strontium, dissolved                   |                               | 3.55               | 0.0010                |              |                | 3.54             |               |                  | < 1      | 20              |           |
| Sulfur, dissolved                      |                               | 188                |                       | mg/L         |                | 187              |               |                  | < 1      | 20              |           |
| Tellurium, dissolved                   |                               | < 0.00050          | 0.00050               |              |                | < 0.00050        |               |                  |          | 20              |           |
| Thallium, dissolved                    |                               | < 0.000020         | 0.000020              |              |                | < 0.000020       |               |                  |          | 20              |           |
| Thorium, dissolved                     |                               | < 0.00010          | 0.00010               |              |                | < 0.00010        |               |                  |          | 20              |           |
| Tin, dissolved                         |                               | < 0.00020          | 0.00020               | mg/L         |                | < 0.00020        |               |                  |          | 20              |           |
| Titanium, dissolved                    |                               | < 0.0050           | 0.0050                | mg/L         |                | < 0.0050         |               |                  |          | 20              |           |
| Tungsten, dissolved                    |                               | < 0.0010           | 0.0010                |              |                | < 0.0010         |               |                  |          | 20              |           |
| Uranium, dissolved                     |                               | 0.00465            | 0.000020              |              |                | 0.00470          |               |                  | 1        | 20              |           |
| Vanadium, dissolved                    |                               | < 0.0010           | 0.0010                |              |                | < 0.0010         |               |                  |          | 20              |           |
| Zinc, dissolved                        |                               | 0.0406             | 0.0040                | mg/L         |                | 0.0362           |               |                  | 11       | 20              |           |



| REPORTED TO Golder Associates PROJECT 20144760          | Ltd. (Kelowna  | n)                         |                |                  | WORK<br>REPOR | ORDER<br>TED     | 21L0<br>2022 | )506<br>?-01-19 | 11:53     |
|---------------------------------------------------------|----------------|----------------------------|----------------|------------------|---------------|------------------|--------------|-----------------|-----------|
| Analyte                                                 | Result         | RL Units                   | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit     | % RPD        | RPD<br>Limit    | Qualifier |
| Dissolved Metals, Batch B1L0783, Conti                  | inued          |                            |                |                  |               |                  |              |                 |           |
| Duplicate (B1L0783-DUP1), Continued                     | Sc             | ource: 21L0506-01          | Prepared       | l: 2021-12-0     | 8, Analyze    | d: 2021-1        | 2-08         |                 |           |
| Zirconium, dissolved                                    | < 0.00010      | 0.00010 mg/L               |                | < 0.00010        |               |                  |              | 20              |           |
| Reference (B1L0783-SRM1)                                |                |                            | Prepared       | l: 2021-12-0     | 8. Analvze    | d: 2021-1        | 2-08         |                 |           |
| Aluminum, dissolved                                     | 0.217          | 0.0050 mg/L                | 0.235          |                  | 92            | 70-130           |              |                 |           |
| Antimony, dissolved                                     | 0.0531         | 0.00020 mg/L               | 0.0431         |                  | 123           | 70-130           |              |                 |           |
| Arsenic, dissolved                                      | 0.410          | 0.00050 mg/L               | 0.423          |                  | 97            | 70-130           |              |                 |           |
| Barium, dissolved                                       | 3.15           | 0.0050 mg/L                | 3.30           |                  | 95            | 70-130           |              |                 |           |
| Beryllium, dissolved                                    | 0.254          | 0.00010 mg/L               | 0.209          |                  | 122           | 70-130           |              |                 |           |
| Boron, dissolved                                        | 2.02           | 0.0500 mg/L                | 1.65           |                  | 123           | 70-130           |              |                 |           |
| Calaium, dissolved                                      | 0.278<br>8.80  | 0.000010 mg/L<br>0.20 mg/L | 0.221<br>7.72  |                  | 126           | 70-130<br>70-130 |              |                 |           |
| Calcium, dissolved, dissolved Chromium, dissolved       | 0.442          | 0.00050 mg/L               | 0.434          |                  | 114<br>102    | 70-130           |              |                 |           |
| Cobalt, dissolved                                       | 0.136          | 0.00030 mg/L               | 0.124          |                  | 110           | 70-130           |              |                 |           |
| Copper, dissolved                                       | 0.893          | 0.00040 mg/L               | 0.815          |                  | 110           | 70-130           |              |                 |           |
| Iron, dissolved                                         | 1.28           | 0.010 mg/L                 | 1.27           |                  | 101           | 70-130           |              |                 |           |
| Lead, dissolved                                         | 0.116          | 0.00020 mg/L               | 0.110          |                  | 106           | 70-130           |              |                 |           |
| Lithium, dissolved                                      | 0.101          | 0.00010 mg/L               | 0.100          |                  | 101           | 70-130           |              |                 |           |
| Magnesium, dissolved, dissolved                         | 7.15           | 0.010 mg/L                 | 6.59           |                  | 108           | 70-130           |              |                 |           |
| Manganese, dissolved                                    | 0.329          | 0.00020 mg/L               | 0.342          |                  | 96            | 70-130           |              |                 |           |
| Molybdenum, dissolved  Nickel, dissolved                | 0.401<br>0.924 | 0.00010 mg/L               | 0.404<br>0.835 |                  | 99            | 70-130<br>70-130 |              |                 |           |
| Phosphorus, dissolved                                   | 0.505          | 0.00040 mg/L<br>0.050 mg/L | 0.635          |                  | 111<br>101    | 70-130           |              |                 |           |
| Potassium, dissolved                                    | 2.95           | 0.10 mg/L                  | 2.88           |                  | 103           | 70-130           |              |                 |           |
| Selenium, dissolved                                     | 0.0356         | 0.00050 mg/L               | 0.0324         |                  | 110           | 70-130           |              |                 |           |
| Sodium, dissolved                                       | 19.3           | 0.10 mg/L                  | 18.0           |                  | 107           | 70-130           |              |                 |           |
| Strontium, dissolved                                    | 0.847          | 0.0010 mg/L                | 0.935          |                  | 91            | 70-130           |              |                 |           |
| Thallium, dissolved                                     | 0.0403         | 0.000020 mg/L              | 0.0385         |                  | 105           | 70-130           |              |                 |           |
| Uranium, dissolved                                      | 0.246          | 0.000020 mg/L              | 0.258          |                  | 95            | 70-130           |              |                 |           |
| Vanadium, dissolved Zinc, dissolved                     | 0.864<br>0.957 | 0.0010 mg/L<br>0.0040 mg/L | 0.873<br>0.848 |                  | 99<br>113     | 70-130<br>70-130 |              |                 |           |
| Dissolved Metals, Batch B1L1043<br>Blank (B1L1043-BLK1) |                |                            | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | < 0.000010     | 0.000010 mg/L              |                |                  |               |                  |              |                 |           |
| Blank (B1L1043-BLK2)                                    |                |                            | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | < 0.000010     | 0.000010 mg/L              |                |                  |               |                  |              |                 |           |
| Blank (B1L1043-BLK3)                                    |                |                            | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | < 0.000010     | 0.000010 mg/L              |                |                  |               |                  |              |                 |           |
| Duplicate (B1L1043-DUP1)                                | Sc             | ource: 21L0506-01          | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | < 0.000010     | 0.000010 mg/L              |                | < 0.000010       |               |                  |              | 20              |           |
| Matrix Spike (B1L1043-MS1)                              | Sc             | ource: 21L0506-02          | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | 0.000231       | 0.000010 mg/L              | 0.000250       | < 0.000010       | 93            | 70-130           |              |                 |           |
| Reference (B1L1043-SRM1)                                |                |                            | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | 0.000488       | 0.000010 mg/L              | 0.000500       |                  | 98            | 0-200            |              |                 |           |
| Reference (B1L1043-SRM2)                                |                |                            | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | 0.000490       | 0.000010 mg/L              | 0.000500       |                  | 98            | 0-200            |              |                 |           |
| Reference (B1L1043-SRM3)                                |                |                            | Prepared       | l: 2021-12-0     | 9, Analyze    | d: 2021-1        | 2-09         |                 |           |
| Mercury, dissolved                                      | 0.000478       | 0.000010 mg/L              | 0.000500       |                  | 96            | 0-200            |              |                 |           |
|                                                         |                | g                          |                |                  |               |                  |              |                 |           |



| REPORTED TO Golder Associates 20144760                                     | Ltd. (Kelowna) |                            |                |                  | WORK<br>REPOR | ORDER<br>TED |       | 506<br>2-01-19 | 11:53      |
|----------------------------------------------------------------------------|----------------|----------------------------|----------------|------------------|---------------|--------------|-------|----------------|------------|
| Analyte                                                                    | Result         | RL Units                   | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit | % RPD | RPD<br>Limit   | Qualifier  |
| General Parameters, Batch B1L0452                                          |                |                            |                |                  |               |              |       |                |            |
| Blank (B1L0452-BLK1)                                                       |                |                            | Prepared       | : 2021-12-0      | 3, Analyze    | d: 2021-1    | 12-03 |                |            |
| Turbidity                                                                  | < 0.10         | 0.10 NTU                   |                |                  |               |              |       |                |            |
| LCS (B1L0452-BS1)                                                          |                |                            | Prepared       | : 2021-12-0      | )3, Analyze   | d: 2021-1    | 12-03 |                |            |
| Turbidity                                                                  | 38.1           | 0.10 NTU                   | 40.0           |                  | 95            | 90-110       |       |                |            |
| General Parameters, Batch B1L0667                                          |                |                            |                |                  |               |              |       |                |            |
| Blank (B1L0667-BLK1)                                                       |                |                            | Prepared       | : 2021-12-0      | )6, Analyze   | d: 2021-1    | 12-06 |                |            |
| Alkalinity, Total (as CaCO3)                                               | < 1.0          | 1.0 mg/L                   |                |                  | -             |              |       |                |            |
| Alkalinity, Phenolphthalein (as CaCO3)                                     | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Bicarbonate (as CaCO3)                                         | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Carbonate (as CaCO3)                                           | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Hydroxide (as CaCO3)  Conductivity (EC)                        | < 1.0<br>< 2.0 | 1.0 mg/L<br>2.0 μS/cm      |                |                  |               |              |       |                |            |
| Conductivity (EC)                                                          | < 2.0          | 2.0 µS/cm                  |                |                  |               |              |       |                |            |
| Blank (B1L0667-BLK2)                                                       |                |                            | Prepared       | : 2021-12-0      | )6, Analyze   | d: 2021-1    | 12-06 |                |            |
| Alkalinity, Total (as CaCO3)                                               | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Phenolphthalein (as CaCO3)                                     | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Bicarbonate (as CaCO3)                                         | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Carbonate (as CaCO3)                                           | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Hydroxide (as CaCO3)  Conductivity (EC)                        | < 1.0<br>< 2.0 | 1.0 mg/L<br>2.0 μS/cm      |                |                  |               |              |       |                |            |
|                                                                            | · 2.0          | 2.0 μο/οπ                  | D              | . 0004 40 0      | )O A l        | 1.0004       | 10.00 |                |            |
| Blank (B1L0667-BLK3)                                                       |                |                            | Prepared       | : 2021-12-0      | љ, Anaiyze    | a: 2021-     | 12-06 |                |            |
| Alkalinity, Total (as CaCO3)                                               | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Phenolphthalein (as CaCO3)  Alkalinity, Bicarbonate (as CaCO3) | < 1.0<br>< 1.0 | 1.0 mg/L<br>1.0 mg/L       |                |                  |               |              |       |                |            |
| Alkalinity, Carbonate (as CaCO3)                                           | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Alkalinity, Hydroxide (as CaCO3)                                           | < 1.0          | 1.0 mg/L                   |                |                  |               |              |       |                |            |
| Conductivity (EC)                                                          | < 2.0          | 2.0 µS/cm                  |                |                  |               |              |       |                |            |
| LCS (B1L0667-BS1)                                                          |                |                            | Prenared       | : 2021-12-0      | )6 Analyze    | d: 2021-1    | 12-06 |                |            |
|                                                                            | 106            | 1.0 ma/l                   | 100            | . 2021-12-0      | 106           | 80-120       | 12-00 |                |            |
| Alkalinity, Total (as CaCO3)                                               | 106            | 1.0 mg/L                   |                | . 0004 40 0      |               |              | 10.00 |                |            |
| LCS (B1L0667-BS2)                                                          |                |                            |                | : 2021-12-0      |               |              | 12-06 |                |            |
| Alkalinity, Total (as CaCO3)                                               | 95.3           | 1.0 mg/L                   | 100            |                  | 95            | 80-120       |       |                |            |
| LCS (B1L0667-BS3)                                                          |                |                            | Prepared       | : 2021-12-0      | 6, Analyze    | d: 2021-1    | 12-06 |                |            |
| Alkalinity, Total (as CaCO3)                                               | 106            | 1.0 mg/L                   | 100            |                  | 106           | 80-120       |       |                |            |
| LCS (B1L0667-BS4)                                                          |                |                            | Prepared       | : 2021-12-0      | )6, Analyze   | d: 2021-1    | 12-06 |                |            |
| Conductivity (EC)                                                          | 1430           | 2.0 µS/cm                  | 1410           |                  | 102           | 95-105       |       |                |            |
| LCS (B1L0667-BS5)                                                          |                |                            | Prepared       | : 2021-12-0      | 6, Analyze    | d: 2021-1    | 12-06 |                |            |
| Conductivity (EC)                                                          | 1440           | 2.0 µS/cm                  | 1410           |                  | 102           | 95-105       |       |                |            |
| LCS (B1L0667-BS6)                                                          |                |                            | Prepared       | : 2021-12-0      | 06, Analyze   | d: 2021-1    | 12-06 |                |            |
| Conductivity (EC)                                                          | 1440           | 2.0 µS/cm                  | 1410           |                  | 102           | 95-105       |       |                |            |
| Duplicate (B1L0667-DUP1)                                                   |                | e: 21L0506-02              | Prepared       | : 2021-12-0      | 6, Analyze    | d: 2021-     | 12-06 |                |            |
| Alkalinity, Total (as CaCO3)                                               | 318            | 1.0 mg/L                   |                | 320              |               |              | < 1   | 10             |            |
| Alkalinity, Phenolphthalein (as CaCO3)                                     | < 1.0          | 1.0 mg/L                   |                | < 1.0            |               |              |       | 10             |            |
| Alkalinity, Bicarbonate (as CaCO3)                                         | 318            | 1.0 mg/L                   |                | 320              |               |              | < 1   | 10             |            |
| Alkalinity, Carbonate (as CaCO3)                                           | < 1.0          | 1.0 mg/L                   |                | < 1.0            |               |              |       | 10             |            |
| Alkalinity, Hydroxide (as CaCO3)                                           | < 1.0<br>854   | 1.0 mg/L<br>2.0 μS/cm      |                | < 1.0<br>837     |               |              | 2     | 10<br>5        |            |
| Conductivity (EC) pH                                                       | 7.96           | 2.0 μS/cm<br>0.10 pH units |                | 7.95             |               |              | < 1   | 4              |            |
| k                                                                          | 7.00           | o. To pri unito            |                | 7.55             |               |              | * 1   |                | ao 14 of : |



| REPORTED TO<br>PROJECT | Golder Associates<br>20144760 | Ltd. (Kelowna) |                |                |                  | WORK<br>REPOR | ORDER<br>RTED | 21L0<br>2022 | )506<br>2-01-19 | 11:53     |
|------------------------|-------------------------------|----------------|----------------|----------------|------------------|---------------|---------------|--------------|-----------------|-----------|
| Analyte                |                               | Result         | RL Units       | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit  | % RPD        | RPD<br>Limit    | Qualifier |
| General Parameters     | s, Batch B1L0667, Co          | ontinued       |                |                |                  |               |               |              |                 |           |
| Reference (B1L066      | 67-SRM1)                      |                |                | Prepared       | : 2021-12-0      | 6, Analyze    | ed: 2021-1    | 2-06         |                 |           |
| pH                     | ·                             | 7.02           | 0.10 pH units  | 7.01           |                  | 100           | 98-102        |              |                 |           |
| Reference (B1L066      | 67-SRM2)                      |                |                | Prepared       | : 2021-12-0      | 6, Analyze    | ed: 2021-12   | 2-06         |                 |           |
| pH                     | ·                             | 7.02           | 0.10 pH units  | 7.01           |                  | 100           | 98-102        |              |                 |           |
| Reference (B1L066      | 67-SRM3)                      |                |                | Prepared       | : 2021-12-0      | 6, Analyze    | ed: 2021-1    | 2-06         |                 |           |
| pH                     | •                             | 7.03           | 0.10 pH units  | 7.01           |                  | 100           | 98-102        |              |                 |           |
| General Parameters     | s, Batch B1L0696              |                |                |                |                  |               |               |              |                 |           |
| Blank (B1L0696-Bl      | LK1)                          |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-12   | 2-07         |                 |           |
| Solids, Total Dissolve | d                             | < 15           | 15 mg/L        |                |                  |               |               |              |                 |           |
| LCS (B1L0696-BS        | 1)                            |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-12   | 2-07         |                 |           |
| Solids, Total Dissolve | d                             | 239            | 15 mg/L        | 240            |                  | 100           | 85-115        |              |                 |           |
| General Parameters     | s, Batch B1L0698              |                |                |                |                  |               |               |              |                 |           |
| Blank (B1L0698-Bl      | LK1)                          |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | < 0.020        | 0.020 mg/L     |                |                  |               |               |              |                 |           |
| Blank (B1L0698-Bl      | LK2)                          |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | < 0.020        | 0.020 mg/L     |                |                  |               |               |              |                 |           |
| Blank (B1L0698-Bl      | LK3)                          |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-12   | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | < 0.020        | 0.020 mg/L     |                |                  |               |               |              |                 |           |
| LCS (B1L0698-BS        | 1)                            |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-12   | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | 0.934          | 0.020 mg/L     | 1.00           |                  | 93            | 90-115        |              |                 |           |
| LCS (B1L0698-BS2       | 2)                            |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | 0.941          | 0.020 mg/L     | 1.00           |                  | 94            | 90-115        |              |                 |           |
| LCS (B1L0698-BS        | 3)                            |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | 0.957          | 0.020 mg/L     | 1.00           |                  | 96            | 90-115        |              |                 |           |
| Duplicate (B1L069      | 8-DUP1)                       | Sour           | ce: 21L0506-02 | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | < 0.020        | 0.050 mg/L     |                | < 0.050          |               |               |              | 15              |           |
| Matrix Spike (B1L0     | )698-MS1)                     | Sour           | ce: 21L0506-02 | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-12   | 2-07         |                 |           |
| Ammonia, Total (as N   | )                             | 0.261          | 0.020 mg/L     | 0.250          | < 0.050          | 97            | 75-125        |              |                 |           |
| General Parameter      | s, Batch B1L0756              |                |                |                |                  |               |               |              |                 |           |
| Blank (B1L0756-Bl      | LK1)                          |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-12   | 2-07         |                 |           |
| Nitrogen, Total Kjelda | hl                            | < 0.050        | 0.050 mg/L     |                |                  |               |               |              |                 |           |
| Blank (B1L0756-Bl      | LK2)                          |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Nitrogen, Total Kjelda | hl                            | < 0.050        | 0.050 mg/L     | •              |                  | -             |               |              |                 |           |
| LCS (B1L0756-BS        | 1)                            |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Nitrogen, Total Kjelda | •                             | 0.890          | 0.050 mg/L     | 1.00           |                  | 89            | 85-115        |              |                 |           |
| LCS (B1L0756-BS2       | 2)                            |                |                | Prepared       | : 2021-12-0      | 7, Analyze    | ed: 2021-1    | 2-07         |                 |           |
| Nitrogen, Total Kjelda | •                             | 0.855          | 0.050 mg/L     | 1.00           |                  | 86            | 85-115        |              |                 |           |



| REPORTED TO | Golder Associates Ltd. (Kelowna) | WORK ORDER | 21L0506          |
|-------------|----------------------------------|------------|------------------|
| PROJECT     | 20144760                         | REPORTED   | 2022-01-19 11:53 |

| Analyte                                   | Result | RL Units        | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
|-------------------------------------------|--------|-----------------|----------------|------------------|------------|--------------|-------|--------------|-----------|
| Microbiological Parameters, Batch B1L0422 |        |                 |                |                  |            |              |       |              |           |
| Blank (B1L0422-BLK1)                      |        |                 | Prepared       | l: 2021-12-0     | 3, Analyze | d: 2021-1    | 12-03 |              |           |
| Coliforms, Total                          | < 1    | 1 MPN/100 r     | mL             |                  |            |              |       |              |           |
| E. coli                                   | < 1    | 1 MPN/100 r     | nL             |                  |            |              |       |              |           |
| Blank (B1L0422-BLK2)                      |        |                 | Prepared       | l: 2021-12-0     | 3, Analyze | d: 2021-1    | 12-03 |              |           |
| Coliforms, Fecal                          | < 1    | 1 MPN/100 r     | mL             |                  |            |              |       |              |           |
| E. coli                                   | < 1    | 1 MPN/100 r     | nL             |                  |            |              |       |              |           |
| Duplicate (B1L0422-DUP1)                  | Sou    | rce: 21L0506-01 | Prepared       | l: 2021-12-0     | 3, Analyze | d: 2021-1    | 12-03 |              |           |
| Coliforms, Total                          | < 1    | MPN/100 r       | mL             | < 1              |            |              |       | 80           | RS2       |
| E. coli                                   | < 1    | MPN/100 r       | mL             | < 1              |            |              |       | 80           | RS2       |
| Duplicate (B1L0422-DUP2)                  | Sou    | rce: 21L0506-02 | Prepared       | l: 2021-12-0     | 3, Analyze | d: 2021-1    | 2-03  |              |           |
| Coliforms, Fecal                          | < 1    | MPN/100 r       | mL             | < 1              |            |              |       | 80           | RS2       |
| E. coli                                   | < 1    | MPN/100 r       | mL             | < 1              |            |              |       | 80           | RS2       |

#### Total Metals, Batch B1L0788

| Blank (B1L0788-BLK1) |            |               | Prepared: 2021-12-07, Analyzed: 2021-12-07 |
|----------------------|------------|---------------|--------------------------------------------|
| Aluminum, total      | < 0.0050   | 0.0050 mg/L   |                                            |
| Antimony, total      | < 0.00020  | 0.00020 mg/L  |                                            |
| Arsenic, total       | < 0.00050  | 0.00050 mg/L  |                                            |
| Barium, total        | < 0.0050   | 0.0050 mg/L   |                                            |
| Beryllium, total     | < 0.00010  | 0.00010 mg/L  |                                            |
| Bismuth, total       | < 0.00010  | 0.00010 mg/L  |                                            |
| Boron, total         | < 0.0500   | 0.0500 mg/L   |                                            |
| Cadmium, total       | < 0.000010 | 0.000010 mg/L |                                            |
| Calcium, total       | < 0.20     | 0.20 mg/L     |                                            |
| Chromium, total      | < 0.00050  | 0.00050 mg/L  |                                            |
| Cobalt, total        | < 0.00010  | 0.00010 mg/L  |                                            |
| Copper, total        | < 0.00040  | 0.00040 mg/L  |                                            |
| Iron, total          | < 0.010    | 0.010 mg/L    |                                            |
| Lead, total          | < 0.00020  | 0.00020 mg/L  |                                            |
| Lithium, total       | < 0.00010  | 0.00010 mg/L  |                                            |
| Magnesium, total     | < 0.010    | 0.010 mg/L    |                                            |
| Manganese, total     | < 0.00020  | 0.00020 mg/L  |                                            |
| Mercury, total       | < 0.000040 | 0.000040 mg/L |                                            |
| Molybdenum, total    | < 0.00010  | 0.00010 mg/L  |                                            |
| Nickel, total        | < 0.00040  | 0.00040 mg/L  |                                            |
| Phosphorus, total    | < 0.050    | 0.050 mg/L    |                                            |
| Potassium, total     | < 0.10     | 0.10 mg/L     |                                            |
| Selenium, total      | < 0.00050  | 0.00050 mg/L  |                                            |
| Silicon, total       | < 1.0      | 1.0 mg/L      |                                            |
| Silver, total        | < 0.000050 | 0.000050 mg/L |                                            |
| Sodium, total        | < 0.10     | 0.10 mg/L     |                                            |
| Strontium, total     | < 0.0010   | 0.0010 mg/L   |                                            |
| Sulfur, total        | < 3.0      | 3.0 mg/L      |                                            |
| Tellurium, total     | < 0.00050  | 0.00050 mg/L  |                                            |
| Thallium, total      | < 0.000020 | 0.000020 mg/L |                                            |
| Thorium, total       | < 0.00010  | 0.00010 mg/L  |                                            |
| Tin, total           | < 0.00020  | 0.00020 mg/L  |                                            |
| Titanium, total      | < 0.0050   | 0.0050 mg/L   |                                            |
| Tungsten, total      | < 0.0010   | 0.0010 mg/L   |                                            |
| Uranium, total       | < 0.000020 | 0.000020 mg/L |                                            |
| Vanadium, total      | < 0.0010   | 0.0010 mg/L   |                                            |
| Zinc, total          | < 0.0040   | 0.0040 mg/L   |                                            |
| Zirconium, total     | < 0.00010  | 0.00010 mg/L  |                                            |



|                                |                                    |                |                               |                   |                  |               |                  | V            |                |           |
|--------------------------------|------------------------------------|----------------|-------------------------------|-------------------|------------------|---------------|------------------|--------------|----------------|-----------|
| REPORTED TO PROJECT            | Golder Associates Ltd.<br>20144760 | (Kelowna       | )                             |                   |                  | WORK<br>REPOR |                  | 21L0<br>2022 | 506<br>2-01-19 | 11:53     |
| Analyte                        |                                    | Result         | RL Units                      | Spike<br>Level    | Source<br>Result | % REC         | REC<br>Limit     | % RPD        | RPD<br>Limit   | Qualifier |
| Total Metals, Batc             | h B1L0788, Continued               |                |                               |                   |                  |               |                  |              |                |           |
| LCS (B1L0788-BS                | 1)                                 |                |                               | Prepared          | : 2021-12-07     | , Analyze     | d: 2021-1        | 2-07         |                |           |
| Aluminum, total                |                                    | 0.0226         | 0.0050 mg/L                   | 0.0200            |                  | 113           | 80-120           |              |                |           |
| Antimony, total                |                                    | 0.0228         | 0.00020 mg/L                  | 0.0200            |                  | 114           | 80-120           |              |                |           |
| Arsenic, total                 |                                    | 0.0216         | 0.00050 mg/L                  | 0.0200            |                  | 108           | 80-120           |              |                |           |
| Barium, total                  |                                    | 0.0227         | 0.0050 mg/L                   | 0.0200            |                  | 114           | 80-120           |              |                |           |
| Beryllium, total               |                                    | 0.0225         | 0.00010 mg/L                  | 0.0200            |                  | 113           | 80-120           |              |                |           |
| Bismuth, total                 |                                    | 0.0221         | 0.00010 mg/L                  | 0.0200            |                  | 110           | 80-120           |              |                |           |
| Boron, total                   |                                    | < 0.0500       | 0.0500 mg/L                   | 0.0200            |                  | 114           | 80-120           |              |                |           |
| Cadmium, total                 |                                    | 0.0221         | 0.000010 mg/L                 | 0.0200            |                  | 111           | 80-120           |              |                |           |
| Calcium, total Chromium, total |                                    | 2.14<br>0.0202 | 0.20 mg/L<br>0.00050 mg/L     | 2.00<br>0.0200    |                  | 107<br>101    | 80-120<br>80-120 |              |                |           |
| Cobalt, total                  |                                    | 0.0202         | 0.00030 Hig/L<br>0.00010 mg/L | 0.0200            |                  | 105           | 80-120           |              |                |           |
| Copper, total                  |                                    | 0.0210         | 0.00040 mg/L                  | 0.0200            |                  | 102           | 80-120           |              |                |           |
| Iron, total                    |                                    | 2.11           | 0.010 mg/L                    | 2.00              |                  | 106           | 80-120           |              |                |           |
| Lead, total                    |                                    | 0.0237         | 0.00020 mg/L                  | 0.0200            |                  | 118           | 80-120           |              |                |           |
| Lithium, total                 |                                    | 0.0211         | 0.00010 mg/L                  | 0.0200            |                  | 106           | 80-120           |              |                |           |
| Magnesium, total               |                                    | 2.26           | 0.010 mg/L                    | 2.00              |                  | 113           | 80-120           |              |                |           |
| Manganese, total               |                                    | 0.0203         | 0.00020 mg/L                  | 0.0200            |                  | 102           | 80-120           |              |                |           |
| Mercury, total                 |                                    | 0.00111        | 0.000040 mg/L                 | 0.00101           |                  | 109           | 80-120           |              |                |           |
| Molybdenum, total              |                                    | 0.0220         | 0.00010 mg/L                  | 0.0200            |                  | 110           | 80-120           |              |                |           |
| Nickel, total                  |                                    | 0.0213         | 0.00040 mg/L                  | 0.0200            |                  | 107           | 80-120           |              |                |           |
| Phosphorus, total              |                                    | 2.21           | 0.050 mg/L                    | 2.00              |                  | 111           | 80-120           |              |                |           |
| Potassium, total               |                                    | 2.31           | 0.10 mg/L                     | 2.00              |                  | 116           | 80-120           |              |                |           |
| Selenium, total                |                                    | 0.0223         | 0.00050 mg/L                  | 0.0200            |                  | 112           | 80-120           |              |                |           |
| Silicon, total                 |                                    | 2.3            | 1.0 mg/L                      | 2.00              |                  | 113           | 80-120           |              |                |           |
| Silver, total                  |                                    | 0.0220         | 0.000050 mg/L                 | 0.0200            |                  | 110           | 80-120           |              |                |           |
| Strontium total                |                                    | 2.25<br>0.0209 | 0.10 mg/L<br>0.0010 mg/L      | 2.00<br>0.0200    |                  | 113<br>105    | 80-120<br>80-120 |              |                |           |
| Strontium, total Sulfur, total |                                    | 5.5            | 3.0 mg/L                      | 5.00              |                  | 111           | 80-120           |              |                |           |
| Tellurium, total               |                                    | 0.0227         | 0.00050 mg/L                  | 0.0200            |                  | 114           | 80-120           |              |                |           |
| Thallium, total                |                                    | 0.0213         | 0.000020 mg/L                 | 0.0200            |                  | 107           | 80-120           |              |                |           |
| Thorium, total                 |                                    | 0.0225         | 0.00010 mg/L                  | 0.0200            |                  | 113           | 80-120           |              |                |           |
| Tin, total                     |                                    | 0.0237         | 0.00020 mg/L                  | 0.0200            |                  | 119           | 80-120           |              |                |           |
| Titanium, total                |                                    | 0.0219         | 0.0050 mg/L                   | 0.0200            |                  | 110           | 80-120           |              |                |           |
| Tungsten, total                |                                    | 0.0237         | 0.0010 mg/L                   | 0.0200            |                  | 119           | 80-120           |              |                |           |
| Uranium, total                 |                                    | 0.0230         | 0.000020 mg/L                 | 0.0200            |                  | 115           | 80-120           |              |                |           |
| Vanadium, total                |                                    | 0.0202         | 0.0010 mg/L                   | 0.0200            |                  | 101           | 80-120           |              |                |           |
| Zinc, total                    |                                    | 0.0204         | 0.0040 mg/L                   | 0.0200            |                  | 102           | 80-120           |              |                |           |
| Zirconium, total               |                                    | 0.0230         | 0.00010 mg/L                  | 0.0200            |                  | 115           | 80-120           |              |                |           |
| Reference (B1L07               | 88-SRM1)                           |                |                               | Prepared          | : 2021-12-07     | , Analyze     | d: 2021-1        | 2-07         |                |           |
| Aluminum, total                |                                    | 0.240          | 0.0050 mg/L                   | 0.198             |                  | 121           | 70-130           |              |                |           |
| Antimony, total                |                                    | 0.0267         | 0.00020 mg/L                  | 0.0230            |                  | 116           | 70-130           |              |                |           |
| Arsenic, total                 |                                    | 0.0216         | 0.00050 mg/L                  | 0.0200            |                  | 108           | 70-130           |              |                |           |
| Barium, total                  |                                    | 0.0179         | 0.0050 mg/L                   | 0.0161            |                  | 112           | 70-130           |              |                |           |
| Beryllium, total               |                                    | 0.00441        | 0.00010 mg/L                  | 0.00384           |                  | 115           | 70-130           |              |                |           |
| Boron, total                   |                                    | 0.204          | 0.0500 mg/L                   | 0.191             |                  | 107           | 70-130           |              |                |           |
| Cadmium, total                 |                                    | 0.00433        | 0.000010 mg/L                 | 0.00404           |                  | 107           | 70-130           |              |                |           |
| Calcium, total                 |                                    | 0.89           | 0.20 mg/L                     | 0.938             |                  | 95            | 70-130           |              |                |           |
| Chromium, total                |                                    | 0.0261         | 0.00050 mg/L                  | 0.0256            |                  | 102           | 70-130           |              |                |           |
| Copper total                   |                                    | 0.0228         | 0.00010 mg/L                  | 0.0214            |                  | 107           | 70-130           |              |                |           |
| Copper, total                  |                                    | 0.0328         | 0.00040 mg/L                  | 0.0322            |                  | 102           | 70-130           |              |                |           |
| Iron, total Lead, total        |                                    | 0.060          | 0.010 mg/L<br>0.00020 mg/L    | 0.0580<br>0.00796 |                  | 104<br>118    | 70-130<br>70-130 |              |                |           |
| Lithium, total                 |                                    | 0.00936        | 0.00020 Hig/L<br>0.00010 mg/L | 0.00796           |                  | 106           | 70-130           |              |                |           |
| Magnesium, total               |                                    | 0.0108         | 0.00010 mg/L                  | 0.0102            |                  | 113           | 70-130           |              |                |           |
| Manganese, total               |                                    | 0.0119         | 0.00020 mg/L                  | 0.0120            |                  | 99            | 70-130           |              |                |           |
| anganoso, total                |                                    | 0.0110         | 0.00020 Hig/L                 | 0.0120            |                  | 30            | 10 100           |              |                |           |



 REPORTED TO
 Golder Associates Ltd. (Kelowna)
 WORK ORDER
 21L0506

 PROJECT
 20144760
 REPORTED
 2022-01-19 11:53

| 20111100                               |        |               |                |                  | IXEI OIX   |              |       | . 01 10      | 11.00     |
|----------------------------------------|--------|---------------|----------------|------------------|------------|--------------|-------|--------------|-----------|
| Analyte                                | Result | RL Units      | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
| Total Metals, Batch B1L0788, Continued |        |               |                |                  |            |              |       |              |           |
| Reference (B1L0788-SRM1), Continued    |        |               | Prepared       | : 2021-12-0      | 7, Analyze | d: 2021-1    | 12-07 |              |           |
| Molybdenum, total                      | 0.0482 | 0.00010 mg/L  | 0.0438         |                  | 110        | 70-130       |       |              |           |
| Nickel, total                          | 0.0416 | 0.00040 mg/L  | 0.0394         |                  | 106        | 70-130       |       |              |           |
| Potassium, total                       | 0.90   | 0.10 mg/L     | 0.820          |                  | 110        | 70-130       |       |              |           |
| Selenium, total                        | 0.130  | 0.00050 mg/L  | 0.117          |                  | 111        | 70-130       |       |              |           |
| Sodium, total                          | 0.41   | 0.10 mg/L     | 0.490          |                  | 84         | 70-130       |       |              |           |
| Strontium, total                       | 0.291  | 0.0010 mg/L   | 0.276          |                  | 105        | 70-130       |       |              |           |
| Thallium, total                        | 0.0125 | 0.000020 mg/L | 0.0118         |                  | 106        | 70-130       |       |              |           |
| Uranium, total                         | 0.0106 | 0.000020 mg/L | 0.00970        |                  | 109        | 70-130       |       |              |           |
| Vanadium, total                        | 0.0286 | 0.0010 mg/L   | 0.0274         |                  | 104        | 70-130       |       |              |           |
| Zinc, total                            | 0.0870 | 0.0040 mg/L   | 0.0884         |                  | 98         | 70-130       |       |              |           |

#### QC Qualifiers:

RS2 The Reporting Limits for this sample have been raised due to limited sample volume.

# CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST

| Project Number: 20144760             | )                                    | Laboratory Name: CarO     |          |
|--------------------------------------|--------------------------------------|---------------------------|----------|
| short Title: Kedd lest on            | Golder Contact: Fangsoppulps         | Address: 3677 Br.97 Kelon | Kelowna  |
| Golder E-mail Address 1: @golder.com | Golder E-mail Address 2: @golder.com | Telephone/Fax:            | Contact: |

,0C4 Telephone (604) 296-4200 Fax (604) 298-5253

WHITE: Golder Copy YELLOW: Lab Copy

Shipment Condition: Seal Intact:

Shipped by:

Time

Date

Temp (°C) Cooler opened by:





### **CERTIFICATE OF ANALYSIS**

**REPORTED TO** Golder Associates Ltd. (Kelowna)

590 McKay Avenue, Suite 300

Kelowna, BC V1Y 5A8

**ATTENTION** Pana Athanasopoulos

**PO NUMBER** 20448804 **PROJECT** 20144760

PROJECT INFO Keddleston

WORK ORDER 21L2571

**RECEIVED / TEMP** 2021-12-16 11:46 / 2.5°C

**REPORTED** 2022-01-27 11:02

COC NUMBER 12411

#### Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

 $^{\circ}$ 

We've Got Chemistry



Ahead of the Curve



You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

more vou It's simple. We figure the enjoy with fun and working our engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at nyipp@caro.ca

**Authorized By:** 

Nicole Yipp Client Service Team Lead Vivole Jipp



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

**WORK ORDER** 21L2571 **REPORTED** 2022-01-27 11:02

| Analyte                              | Result               | Guideline     | RL       | Units | Analyzed   | Qualifie |
|--------------------------------------|----------------------|---------------|----------|-------|------------|----------|
| 12411-01- 840 (21L2571-01)   Matrix: | Water   Sampled: 202 | 1-12-16 09:50 |          |       |            | F2       |
| Anions                               |                      |               |          |       |            |          |
| Bromide                              | < 0.10               | N/A           | 0.10     | mg/L  | 2021-12-17 |          |
| Chloride                             | 5.01                 | AO ≤ 250      | 0.10     | mg/L  | 2021-12-17 |          |
| Fluoride                             | 8.17                 | MAC = 1.5     | 0.10     | mg/L  | 2021-12-17 |          |
| Nitrate (as N)                       | 0.024                | MAC = 10      | 0.010    | mg/L  | 2021-12-17 |          |
| Nitrite (as N)                       | < 0.010              | MAC = 1       | 0.010    | mg/L  | 2021-12-17 |          |
| Sulfate                              | 107                  | AO ≤ 500      | 1.0      | mg/L  | 2021-12-17 |          |
| Calculated Parameters                |                      |               |          |       |            |          |
| Hardness, Total (as CaCO3)           | 64.4                 | None Required | 0.500    | mg/L  | N/A        |          |
| Nitrate+Nitrite (as N)               | 0.0243               | N/A           | 0.0100   |       | N/A        |          |
| Nitrogen, Total                      | < 0.0500             | N/A           | 0.0500   | mg/L  | N/A        |          |
| Dissolved Metals                     |                      |               |          |       |            |          |
| Aluminum, dissolved                  | 0.0055               | N/A           | 0.0050   | mg/L  | 2021-12-23 |          |
| Antimony, dissolved                  | < 0.00020            | N/A           | 0.00020  | mg/L  | 2021-12-23 |          |
| Arsenic, dissolved                   | < 0.00050            | N/A           | 0.00050  | mg/L  | 2021-12-23 |          |
| Barium, dissolved                    | 0.0139               | N/A           | 0.0050   | mg/L  | 2021-12-23 |          |
| Beryllium, dissolved                 | < 0.00010            | N/A           | 0.00010  | mg/L  | 2021-12-23 |          |
| Bismuth, dissolved                   | < 0.00010            | N/A           | 0.00010  | mg/L  | 2021-12-23 |          |
| Boron, dissolved                     | < 0.0500             | N/A           | 0.0500   | mg/L  | 2021-12-23 |          |
| Cadmium, dissolved                   | 0.000022             | N/A           | 0.000010 | mg/L  | 2021-12-23 |          |
| Calcium, dissolved                   | 19.3                 | N/A           | 0.20     | mg/L  | 2021-12-23 |          |
| Chromium, dissolved                  | < 0.00050            | N/A           | 0.00050  | mg/L  | 2021-12-23 |          |
| Cobalt, dissolved                    | < 0.00010            | N/A           | 0.00010  | mg/L  | 2021-12-23 |          |
| Copper, dissolved                    | < 0.00040            | N/A           | 0.00040  | mg/L  | 2021-12-23 |          |
| Iron, dissolved                      | < 0.010              | N/A           | 0.010    | mg/L  | 2021-12-23 |          |
| Lead, dissolved                      | 0.00181              | N/A           | 0.00020  | mg/L  | 2021-12-23 |          |
| Lithium, dissolved                   | 0.0191               | N/A           | 0.00010  | mg/L  | 2021-12-23 |          |
| Magnesium, dissolved                 | 3.89                 | N/A           | 0.010    | mg/L  | 2021-12-23 |          |
| Manganese, dissolved                 | 0.00056              | N/A           | 0.00020  | mg/L  | 2021-12-23 |          |
| Mercury, dissolved                   | < 0.000010           | N/A           | 0.000010 | mg/L  | 2021-12-20 |          |
| Molybdenum, dissolved                | 0.00345              | N/A           | 0.00010  | mg/L  | 2021-12-23 |          |
| Nickel, dissolved                    | < 0.00040            | N/A           | 0.00040  | mg/L  | 2021-12-23 |          |
| Phosphorus, dissolved                | < 0.050              | N/A           | 0.050    |       | 2021-12-23 |          |
| Potassium, dissolved                 | 1.41                 | N/A           | 0.10     | mg/L  | 2021-12-23 |          |
| Selenium, dissolved                  | 0.00052              | N/A           | 0.00050  |       | 2021-12-23 |          |
| Silicon, dissolved                   | 6.2                  | N/A           |          | mg/L  | 2021-12-23 |          |
| Silver, dissolved                    | < 0.000050           | N/A           | 0.000050 |       | 2021-12-23 |          |
| Sodium, dissolved                    | 185                  | N/A           |          | mg/L  | 2021-12-23 |          |
| Strontium, dissolved                 | 0.285                | N/A           | 0.0010   |       | 2021-12-23 |          |
| Sulfur, dissolved                    | 32.7                 | N/A           |          | mg/L  | 2021-12-23 |          |
| Tellurium, dissolved                 | < 0.00050            | N/A           | 0.00050  |       | 2021-12-23 |          |
| Thallium, dissolved                  | < 0.000020           | N/A           | 0.000020 |       | 2021-12-23 |          |
| Thorium, dissolved                   | < 0.00010            | N/A           | 0.00010  |       | 2021-12-23 |          |



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

**WORK ORDER** 21L2571 **REPORTED** 2022-01-27 11:02

| Analyte                                   | Result            | Guideline           | RL       | Units      | Analyzed   | Qualifie |
|-------------------------------------------|-------------------|---------------------|----------|------------|------------|----------|
| 12411-01- 840 (21L2571-01)   Matrix: Wate | er   Sampled: 202 | 1-12-16 09:50, Cont | inued    |            |            | F2       |
| Dissolved Metals, Continued               |                   |                     |          |            |            |          |
| Tin, dissolved                            | < 0.00020         | N/A                 | 0.00020  | mg/L       | 2021-12-23 |          |
| Titanium, dissolved                       | < 0.0050          | N/A                 | 0.0050   | mg/L       | 2021-12-23 |          |
| Tungsten, dissolved                       | < 0.0010          | N/A                 | 0.0010   | mg/L       | 2021-12-23 |          |
| Uranium, dissolved                        | 0.00234           | N/A                 | 0.000020 | mg/L       | 2021-12-23 |          |
| Vanadium, dissolved                       | < 0.0010          | N/A                 | 0.0010   | mg/L       | 2021-12-23 |          |
| Zinc, dissolved                           | 0.244             | N/A                 | 0.0040   | mg/L       | 2021-12-23 |          |
| Zirconium, dissolved                      | < 0.00010         | N/A                 | 0.00010  | mg/L       | 2021-12-23 |          |
| General Parameters                        |                   |                     |          |            |            |          |
| Alkalinity, Total (as CaCO3)              | 349               | N/A                 | 1.0      | mg/L       | 2021-12-17 |          |
| Alkalinity, Phenolphthalein (as CaCO3)    | 2.6               | N/A                 | 1.0      | mg/L       | 2021-12-17 |          |
| Alkalinity, Bicarbonate (as CaCO3)        | 344               | N/A                 |          | mg/L       | 2021-12-17 |          |
| Alkalinity, Carbonate (as CaCO3)          | 5.1               | N/A                 |          | mg/L       | 2021-12-17 |          |
| Alkalinity, Hydroxide (as CaCO3)          | < 1.0             | N/A                 |          | mg/L       | 2021-12-17 |          |
| Ammonia, Total (as N)                     | < 0.050           | None Required       | 0.050    | mg/L       | 2021-12-20 |          |
| Conductivity (EC)                         | 896               | N/A                 | 2.0      |            | 2021-12-17 |          |
| Nitrogen, Total Kjeldahl                  | < 0.050           | N/A                 | 0.050    | mg/L       | 2021-12-21 |          |
| pH                                        | 8.33              | 7.0-10.5            |          | pH units   | 2021-12-17 | HT2      |
| Solids, Total Dissolved                   | 548               | AO ≤ 500            | 15       | mg/L       | 2021-12-21 |          |
| Turbidity                                 | 0.88              | OG < 1              | 0.10     | NTU        | 2021-12-17 |          |
| Microbiological Parameters                |                   |                     |          |            |            |          |
| Coliforms, Total (Q-Tray)                 | < 1               | MAC = 0             | 1        | MPN/100 mL | 2021-12-17 |          |
| Coliforms, Fecal (Q-Tray)                 | < 1               | N/A                 | 1        | MPN/100 mL | 2021-12-17 |          |
| E. coli (Q-Tray)                          | < 1               | MAC = 0             | 1        | MPN/100 mL | 2021-12-17 |          |
| Miscellaneous Subcontracted Parameters    |                   |                     |          |            |            |          |
| delta-18-O                                | -19.55            | N/A                 |          | per mil    | 2022-01-20 |          |
| delta-2-H                                 | -150.1            | N/A                 |          | per mil    | 2022-01-20 |          |
| Total Metals                              |                   |                     |          |            |            |          |
| Aluminum, total                           | 0.0171            | OG < 0.1            | 0.0050   | mg/L       | 2021-12-23 |          |
| Antimony, total                           | < 0.00020         | MAC = 0.006         | 0.00020  |            | 2021-12-23 |          |
| Arsenic, total                            | < 0.00050         | MAC = 0.01          | 0.00050  |            | 2021-12-23 |          |
| Barium, total                             | 0.0146            | MAC = 2             | 0.0050   |            | 2021-12-23 |          |
| Beryllium, total                          | < 0.00010         | N/A                 | 0.00010  |            | 2021-12-23 |          |
| Bismuth, total                            | < 0.00010         | N/A                 | 0.00010  |            | 2021-12-23 |          |
| Boron, total                              | < 0.0500          | MAC = 5             | 0.0500   |            | 2021-12-23 |          |
| Cadmium, total                            | 0.000080          | MAC = 0.005         | 0.000010 |            | 2021-12-23 |          |
| Calcium, total                            | 20.3              | None Required       |          | mg/L       | 2021-12-23 |          |
| Chromium, total                           | < 0.00050         | MAC = 0.05          | 0.00050  |            | 2021-12-23 |          |
| Cobalt, total                             | < 0.00010         | N/A                 | 0.00010  |            | 2021-12-23 |          |
| Copper, total                             | 0.00093           | MAC = 2             | 0.00040  |            | 2021-12-23 |          |
| Iron, total                               | 0.026             | AO ≤ 0.3            | 0.010    |            | 2021-12-23 |          |



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER 2

21L2571

**REPORTED** 2022-01-27 11:02

| Analyte                       | Result                      | Guideline            | RL       | Units | Analyzed   | Qualifie |
|-------------------------------|-----------------------------|----------------------|----------|-------|------------|----------|
| 2411-01- 840 (21L2571-01)   M | atrix: Water   Sampled: 202 | 21-12-16 09:50, Cont | inued    |       |            | F2       |
| otal Metals, Continued        |                             |                      |          |       |            |          |
| Lead, total                   | 0.00254                     | MAC = 0.005          | 0.00020  | mg/L  | 2021-12-23 |          |
| Lithium, total                | 0.0193                      | N/A                  | 0.00010  | mg/L  | 2021-12-23 |          |
| Magnesium, total              | 3.99                        | None Required        | 0.010    | mg/L  | 2021-12-23 |          |
| Manganese, total              | 0.00032                     | MAC = 0.12           | 0.00020  | mg/L  | 2021-12-23 |          |
| Mercury, total                | < 0.000040                  | MAC = 0.001          | 0.000040 | mg/L  | 2021-12-23 |          |
| Molybdenum, total             | 0.00383                     | N/A                  | 0.00010  | mg/L  | 2021-12-23 |          |
| Nickel, total                 | 0.00044                     | N/A                  | 0.00040  | mg/L  | 2021-12-23 |          |
| Phosphorus, total             | < 0.050                     | N/A                  | 0.050    | mg/L  | 2021-12-23 |          |
| Potassium, total              | 1.41                        | N/A                  | 0.10     | mg/L  | 2021-12-23 |          |
| Selenium, total               | < 0.00050                   | MAC = 0.05           | 0.00050  | mg/L  | 2021-12-23 |          |
| Silicon, total                | 6.5                         | N/A                  | 1.0      | mg/L  | 2021-12-23 |          |
| Silver, total                 | < 0.000050                  | None Required        | 0.000050 | mg/L  | 2021-12-23 |          |
| Sodium, total                 | 190                         | AO ≤ 200             | 0.10     | mg/L  | 2021-12-23 |          |
| Strontium, total              | 0.290                       | MAC = 7              | 0.0010   | mg/L  | 2021-12-23 |          |
| Sulfur, total                 | 31.8                        | N/A                  | 3.0      | mg/L  | 2021-12-23 |          |
| Tellurium, total              | < 0.00050                   | N/A                  | 0.00050  | mg/L  | 2021-12-23 |          |
| Thallium, total               | < 0.000020                  | N/A                  | 0.000020 | mg/L  | 2021-12-23 |          |
| Thorium, total                | < 0.00010                   | N/A                  | 0.00010  | mg/L  | 2021-12-23 |          |
| Tin, total                    | < 0.00020                   | N/A                  | 0.00020  | mg/L  | 2021-12-23 |          |
| Titanium, total               | < 0.0050                    | N/A                  | 0.0050   | mg/L  | 2021-12-23 |          |
| Tungsten, total               | < 0.0010                    | N/A                  | 0.0010   | mg/L  | 2021-12-23 |          |
| Uranium, total                | 0.00214                     | MAC = 0.02           | 0.000020 | mg/L  | 2021-12-23 |          |
| Vanadium, total               | < 0.0010                    | N/A                  | 0.0010   | mg/L  | 2021-12-23 |          |
| Zinc, total                   | 0.387                       | AO ≤ 5               | 0.0040   | mg/L  | 2021-12-23 |          |
| Zirconium, total              | 0.00010                     | N/A                  | 0.00010  | mg/L  | 2021-12-23 |          |

#### Sample Qualifiers:

F2 The sample was not field-preserved with HNO3 and was therefore preserved in the laboratory and held for at least 16 hours prior to analysis for total metals.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.



#### **APPENDIX 1: SUPPORTING INFORMATION**

**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER

21L2571

**REPORTED** 2022-01-27 11:02

| Analysis Description               | Method Ref.               | Technique                                                                            | Accredited | Location |
|------------------------------------|---------------------------|--------------------------------------------------------------------------------------|------------|----------|
| 2H and 18O Isotope Ratios in Water | Stable Isotopes           | CRDS                                                                                 |            | Sublet   |
| Alkalinity in Water                | SM 2320 B* (2017)         | Titration with H2SO4                                                                 | ✓          | Kelowna  |
| Ammonia, Total in Water            | SM 4500-NH3 G*<br>(2017)  | Automated Colorimetry (Phenate)                                                      | ✓          | Kelowna  |
| Anions in Water                    | SM 4110 B (2017)          | Ion Chromatography                                                                   | ✓          | Kelowna  |
| Coliforms, Fecal in Water          | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Coliforms, Total in Water          | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Conductivity in Water              | SM 2510 B (2017)          | Conductivity Meter                                                                   | ✓          | Kelowna  |
| Dissolved Metals in Water          | EPA 200.8 / EPA 6020B     | 0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)           | ✓          | Richmond |
| E. coli in Water                   | NA / SM 9223 (2017)       | Quanti-Tray / Enzyme Substrate Endo Agar                                             | ✓          | Kelowna  |
| Hardness in Water                  | SM 2340 B (2017)          | Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]                                       | ✓          | N/A      |
| Mercury, dissolved in Water        | EPA 245.7*                | BrCl2 Oxidation / Cold Vapor Atomic Fluorescence<br>Spectrometry (CVAFS)             | ✓          | Richmond |
| Nitrogen, Total Kjeldahl in Water  | SM 4500-Norg D*<br>(2017) | Block Digestion and Flow Injection Analysis                                          | ✓          | Kelowna  |
| pH in Water                        | SM 4500-H+ B (2017)       | Electrometry                                                                         | ✓          | Kelowna  |
| Solids, Total Dissolved in Water   | SM 2540 C* (2017)         | Gravimetry (Dried at 103-105C)                                                       | ✓          | Kelowna  |
| Total Metals in Water              | EPA 200.2 / EPA 6020B     | HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) | ✓          | Richmond |
| Turbidity in Water                 | SM 2130 B (2017)          | Nephelometry                                                                         | ✓          | Kelowna  |

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

#### Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

MPN/100 mL Most Probable Number per 100 millilitres

NTU Nephelometric Turbidity Units
OG Operational Guideline (treated water)

per mil Parts per thousand

pH units pH < 7 = acidic, ph > 7 = basic $\mu$ S/cm Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

#### **Guidelines Referenced in this Report:**

Guidelines for Canadian Drinking Water Quality (Health Canada, June 2019)

Note: In some cases, the values displayed on the report represent the lowest guideline and are to be verified by the end user



## **APPENDIX 1: SUPPORTING INFORMATION**

**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER REPORTED 21L2571

2022-01-27 11:02

#### **General Comments:**

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:nyipp@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.



**REPORTED TO** Golder Associates Ltd. (Kelowna)

**PROJECT** 20144760

WORK ORDER REPORTED 21L2571 2022-01-27 11:02

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
   Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte               | Result  | RL Units   | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
|-----------------------|---------|------------|----------------|------------------|------------|--------------|-------|--------------|-----------|
| Anions, Batch B1L2039 |         |            |                |                  |            |              |       |              |           |
| Blank (B1L2039-BLK1)  |         |            | Prepared       | l: 2021-12-1     | 7, Analyze | d: 2021-1    | 12-17 |              |           |
| Bromide               | < 0.10  | 0.10 mg/L  |                |                  |            |              |       |              |           |
| Chloride              | < 0.10  | 0.10 mg/L  |                |                  |            |              |       |              |           |
| Fluoride              | < 0.10  | 0.10 mg/L  |                |                  |            |              |       |              |           |
| Nitrate (as N)        | < 0.010 | 0.010 mg/L |                |                  |            |              |       |              |           |
| Nitrite (as N)        | < 0.010 | 0.010 mg/L |                |                  |            |              |       |              |           |
| Sulfate               | < 1.0   | 1.0 mg/L   |                |                  |            |              |       |              |           |
| Blank (B1L2039-BLK2)  |         |            | Prepared       | l: 2021-12-1     | 7, Analyze | d: 2021-1    | 12-17 |              |           |
| Bromide               | < 0.10  | 0.10 mg/L  |                |                  |            |              |       |              |           |
| Chloride              | < 0.10  | 0.10 mg/L  |                |                  |            |              |       |              |           |
| Fluoride              | < 0.10  | 0.10 mg/L  |                |                  |            |              |       |              |           |
| Nitrate (as N)        | < 0.010 | 0.010 mg/L |                |                  |            |              |       |              |           |
| Nitrite (as N)        | < 0.010 | 0.010 mg/L |                |                  |            |              |       |              |           |
| Sulfate               | < 1.0   | 1.0 mg/L   |                |                  |            |              |       |              |           |
| LCS (B1L2039-BS1)     |         |            | Prepared       | l: 2021-12-1     | 7, Analyze | d: 2021-1    | 12-17 |              |           |
| Bromide               | 4.23    | 0.10 mg/L  | 4.00           |                  | 106        | 85-115       |       |              |           |
| Chloride              | 16.0    | 0.10 mg/L  | 16.0           |                  | 100        | 90-110       |       |              |           |
| Fluoride              | 3.95    | 0.10 mg/L  | 4.00           |                  | 99         | 88-108       |       |              |           |
| Nitrate (as N)        | 4.02    | 0.010 mg/L | 4.00           |                  | 101        | 90-110       |       |              |           |
| Nitrite (as N)        | 2.07    | 0.010 mg/L | 2.00           |                  | 104        | 85-115       |       |              |           |
| Sulfate               | 16.3    | 1.0 mg/L   | 16.0           |                  | 102        | 90-110       |       |              |           |
| LCS (B1L2039-BS2)     |         |            | Prepared       | l: 2021-12-1     | 7, Analyze | d: 2021-1    | 12-17 |              |           |
| Bromide               | 3.91    | 0.10 mg/L  | 4.00           |                  | 98         | 85-115       |       |              |           |
| Chloride              | 16.1    | 0.10 mg/L  | 16.0           |                  | 100        | 90-110       |       |              |           |
| Fluoride              | 3.96    | 0.10 mg/L  | 4.00           |                  | 99         | 88-108       |       |              |           |
| Nitrate (as N)        | 4.00    | 0.010 mg/L | 4.00           |                  | 100        | 90-110       |       |              |           |
| Nitrite (as N)        | 2.00    | 0.010 mg/L | 2.00           |                  | 100        | 85-115       |       |              |           |
| Sulfate               | 16.2    | 1.0 mg/L   | 16.0           |                  | 101        | 90-110       |       |              |           |

#### Dissolved Metals, Batch B1L2214

| Blank (B1L2214-BLK1) |            |               | Prepared: 2021-12-20, Analyzed: 2021-12-20 |
|----------------------|------------|---------------|--------------------------------------------|
| Mercury, dissolved   | < 0.000010 | 0.000010 mg/L |                                            |



|                                        | Golder Associates<br>20144760 | Ltd. (Kelowna        | )        |       |                |                  | WORK<br>REPOR | ORDER<br>TED | 21L2<br>2022 | 2571<br>2-01-27 | 11:02    |
|----------------------------------------|-------------------------------|----------------------|----------|-------|----------------|------------------|---------------|--------------|--------------|-----------------|----------|
| Analyte                                |                               | Result               | RL       | Units | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit | % RPD        | RPD<br>Limit    | Qualifie |
| Dissolved Metals, B                    | atch B1L2214, Cont            | inued                |          |       |                |                  |               |              |              |                 |          |
| Reference (B1L2214                     | -SRM1)                        |                      |          |       | Prepared       | : 2021-12-2      | 0, Analyze    | d: 2021-1    | 2-20         |                 |          |
| Mercury, dissolved                     |                               | 0.000477             | 0.000010 | mg/L  | 0.000500       |                  | 95            | 0-200        |              |                 |          |
| Reference (B1L2214                     | -SRM2)                        |                      |          |       | Prepared       | : 2021-12-2      | 0. Analyze    | d: 2021-1    | 2-20         |                 |          |
| Mercury, dissolved                     |                               | 0.000473             | 0.000010 | mg/L  | 0.000500       |                  | 95            | 0-200        |              |                 |          |
| Dissolved Metals, B                    | atch B1L2530                  |                      |          |       |                |                  |               |              |              |                 |          |
| Blank (B1L2530-BL                      | <b>(1)</b>                    |                      |          |       | Prepared       | : 2021-12-2      | 2, Analyze    | d: 2021-1    | 2-22         |                 |          |
| Aluminum, dissolved                    | •                             | < 0.0050             | 0.0050   | mg/L  |                |                  | -             |              |              |                 |          |
| Antimony, dissolved                    |                               | < 0.00020            | 0.00020  |       |                |                  |               |              |              |                 |          |
| Arsenic, dissolved                     |                               | < 0.00050            | 0.00050  |       |                |                  |               |              |              |                 |          |
| Barium, dissolved                      |                               | < 0.0050             | 0.0050   |       |                |                  |               |              |              |                 |          |
| Beryllium, dissolved                   |                               | < 0.00010            | 0.00010  |       |                |                  |               |              |              |                 |          |
| Bismuth, dissolved                     |                               | < 0.00010            | 0.00010  |       |                |                  |               |              |              |                 |          |
| Boron, dissolved Cadmium, dissolved    |                               | < 0.0500             | 0.0500   |       |                |                  |               |              |              |                 |          |
| Cadmium, dissolved, diss               | solvod                        | < 0.000010<br>< 0.20 | 0.000010 | mg/L  |                |                  |               |              |              |                 |          |
| Chromium, dissolved                    | soiveu                        | < 0.00050            | 0.00050  |       |                |                  |               |              |              |                 |          |
| Cobalt, dissolved                      |                               | < 0.00030            | 0.00030  |       |                |                  |               |              |              |                 |          |
| Copper, dissolved                      |                               | < 0.00040            | 0.00040  |       |                |                  |               |              |              |                 |          |
| Iron, dissolved                        |                               | < 0.010              |          | mg/L  |                |                  |               |              |              |                 |          |
| Lead, dissolved                        |                               | < 0.00020            | 0.00020  |       |                |                  |               |              |              |                 |          |
| Lithium, dissolved                     |                               | < 0.00010            | 0.00010  |       |                |                  |               |              |              |                 |          |
| Magnesium, dissolved,                  | dissolved                     | < 0.010              |          | mg/L  |                |                  |               |              |              |                 |          |
| Manganese, dissolved                   |                               | < 0.00020            | 0.00020  | mg/L  |                |                  |               |              |              |                 |          |
| Molybdenum, dissolved                  |                               | < 0.00010            | 0.00010  | mg/L  |                |                  |               |              |              |                 |          |
| Nickel, dissolved                      |                               | < 0.00040            | 0.00040  | mg/L  |                |                  |               |              |              |                 |          |
| Phosphorus, dissolved                  |                               | < 0.050              | 0.050    | mg/L  |                |                  |               |              |              |                 |          |
| Potassium, dissolved                   |                               | < 0.10               |          | mg/L  |                |                  |               |              |              |                 |          |
| Selenium, dissolved                    |                               | < 0.00050            | 0.00050  |       |                |                  |               |              |              |                 |          |
| Silicon, dissolved                     |                               | < 1.0                |          | mg/L  |                |                  |               |              |              |                 |          |
| Silver, dissolved                      |                               | < 0.000050           | 0.000050 |       |                |                  |               |              |              |                 |          |
| Sodium, dissolved                      |                               | < 0.10               |          | mg/L  |                |                  |               |              |              |                 |          |
| Strontium, dissolved                   |                               | < 0.0010             | 0.0010   |       |                |                  |               |              |              |                 |          |
| Sulfur, dissolved Tellurium, dissolved |                               | < 0.00050            | 0.00050  | mg/L  |                |                  |               |              |              |                 |          |
| Thallium, dissolved                    |                               | < 0.00030            | 0.00030  |       |                |                  |               |              |              |                 |          |
| Thorium, dissolved                     |                               | < 0.00010            | 0.00010  |       |                |                  |               |              |              |                 |          |
| Tin, dissolved                         |                               | < 0.00010            | 0.00010  |       |                |                  |               |              |              |                 |          |
| Titanium, dissolved                    |                               | < 0.0050             | 0.0050   |       |                |                  |               |              |              |                 |          |
| Tungsten, dissolved                    |                               | < 0.0010             | 0.0010   |       |                |                  |               |              |              |                 |          |
| Uranium, dissolved                     |                               | < 0.000020           | 0.000020 |       |                |                  |               |              |              |                 |          |
| Vanadium, dissolved                    |                               | < 0.0010             | 0.0010   |       |                |                  |               |              |              |                 |          |
| Zinc, dissolved                        |                               | < 0.0040             | 0.0040   | mg/L  |                |                  |               |              |              |                 |          |
| Zirconium, dissolved                   |                               | < 0.00010            | 0.00010  | mg/L  |                |                  |               |              |              |                 |          |
| LCS (B1L2530-BS1)                      |                               |                      |          |       | Prepared       | : 2021-12-2      | 2, Analyze    | d: 2021-1    | 2-22         |                 |          |
| Aluminum, dissolved                    |                               | 0.0209               | 0.0050   | mg/L  | 0.0200         |                  | 105           | 80-120       |              |                 |          |
| Antimony, dissolved                    |                               | 0.0189               | 0.00020  |       | 0.0200         |                  | 94            | 80-120       |              |                 |          |
| Arsenic, dissolved                     |                               | 0.0181               | 0.00050  |       | 0.0200         |                  | 90            | 80-120       |              |                 |          |
| Barium, dissolved                      |                               | 0.0179               | 0.0050   |       | 0.0200         |                  | 89            | 80-120       |              |                 |          |
| Beryllium, dissolved                   |                               | 0.0184               | 0.00010  |       | 0.0200         |                  | 92            | 80-120       |              |                 |          |
| Bismuth, dissolved                     |                               | 0.0195               | 0.00010  |       | 0.0200         |                  | 97            | 80-120       |              |                 |          |
| Boron, dissolved                       |                               | < 0.0500             | 0.0500   |       | 0.0200         |                  | 102           | 80-120       |              |                 |          |
| Cadmium, dissolved                     | a a luca d                    | 0.0190               | 0.000010 |       | 0.0200         |                  | 95            | 80-120       |              |                 |          |
| Calcium, dissolved, diss               | solved                        | 1.85                 | 0.20     | mg/L  | 2.00           |                  | 93            | 80-120       |              |                 | 0 -1     |



| REPORTED TO<br>PROJECT                     | Golder Associates Ltd<br>20144760 | d. (Kelowna)   |          |              |                |                  | WORK<br>REPOR | ORDER<br>TED     |       | 571<br>-01-27 | 11:02     |
|--------------------------------------------|-----------------------------------|----------------|----------|--------------|----------------|------------------|---------------|------------------|-------|---------------|-----------|
| Analyte                                    |                                   | Result         | RL       | Units        | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit     | % RPD | RPD<br>Limit  | Qualifier |
| Dissolved Metals, I                        | Batch B1L2530, Continu            | ed             |          |              |                |                  |               |                  |       |               |           |
| LCS (B1L2530-BS1                           | ), Continued                      |                |          |              | Prepared       | : 2021-12-2      | 2, Analyze    | d: 2021-1        | 2-22  |               |           |
| Chromium, dissolved                        |                                   | 0.0189         | 0.00050  | mg/L         | 0.0200         |                  | 94            | 80-120           |       |               |           |
| Cobalt, dissolved                          |                                   | 0.0195         | 0.00010  | mg/L         | 0.0200         |                  | 98            | 80-120           |       |               |           |
| Copper, dissolved                          |                                   | 0.0189         | 0.00040  | mg/L         | 0.0200         |                  | 95            | 80-120           |       |               |           |
| Iron, dissolved                            |                                   | 1.88           |          | mg/L         | 2.00           |                  | 94            | 80-120           |       |               |           |
| Lead, dissolved                            |                                   | 0.0193         | 0.00020  |              | 0.0200         |                  | 97            | 80-120           |       |               |           |
| Lithium, dissolved                         |                                   | 0.0185         | 0.00010  |              | 0.0200         |                  | 92            | 80-120           |       |               |           |
| Magnesium, dissolved                       | •                                 | 1.92           |          | mg/L         | 2.00           |                  | 96            | 80-120           |       |               |           |
| Manganese, dissolved                       |                                   | 0.0191         | 0.00020  |              | 0.0200         |                  | 96            | 80-120           |       |               |           |
| Molybdenum, dissolve                       | ed                                | 0.0192         | 0.00010  |              | 0.0200         |                  | 96            | 80-120           |       |               |           |
| Nickel, dissolved                          | 1                                 | 0.0194         | 0.00040  |              | 0.0200         |                  | 97            | 80-120           |       |               |           |
| Phosphorus, dissolve                       | <u> </u>                          | 1.80           |          | mg/L         | 2.00           |                  | 90            | 80-120           |       |               |           |
| Potassium, dissolved                       |                                   | 1.79           |          | mg/L         | 2.00           |                  | 90            | 80-120           |       |               |           |
| Selenium, dissolved                        |                                   | 0.0185         | 0.00050  | mg/L<br>mg/L | 0.0200         |                  | 93            | 80-120           |       |               |           |
| Silicon, dissolved<br>Silver, dissolved    |                                   | 2.0<br>0.0195  | 0.000050 |              | 2.00<br>0.0200 |                  | 99<br>97      | 80-120<br>80-120 |       |               |           |
| Sodium, dissolved                          |                                   | 1.81           |          | mg/L         | 2.00           |                  | 90            | 80-120           |       |               |           |
| Strontium, dissolved                       |                                   | 0.0178         | 0.0010   |              | 0.0200         |                  | 89            | 80-120           |       |               |           |
| Sulfur, dissolved                          |                                   | 4.0            |          | mg/L         | 5.00           |                  | 80            | 80-120           |       |               |           |
| Tellurium, dissolved                       |                                   | 0.0200         | 0.00050  |              | 0.0200         |                  | 100           | 80-120           |       |               |           |
| Thallium, dissolved                        |                                   | 0.0194         | 0.000020 |              | 0.0200         |                  | 97            | 80-120           |       |               |           |
| Thorium, dissolved                         |                                   | 0.0209         | 0.00010  |              | 0.0200         |                  | 104           | 80-120           |       |               |           |
| Tin, dissolved                             |                                   | 0.0196         | 0.00020  |              | 0.0200         |                  | 98            | 80-120           |       |               |           |
| Titanium, dissolved                        |                                   | 0.0199         | 0.0050   |              | 0.0200         |                  | 100           | 80-120           |       |               |           |
| Tungsten, dissolved                        |                                   | 0.0195         | 0.0010   | mg/L         | 0.0200         |                  | 98            | 80-120           |       |               |           |
| Uranium, dissolved                         |                                   | 0.0209         | 0.000020 | mg/L         | 0.0200         |                  | 104           | 80-120           |       |               |           |
| Vanadium, dissolved                        |                                   | 0.0189         | 0.0010   | mg/L         | 0.0200         |                  | 94            | 80-120           |       |               |           |
| Zinc, dissolved                            |                                   | 0.0170         | 0.0040   | mg/L         | 0.0200         |                  | 85            | 80-120           |       |               |           |
| Zirconium, dissolved                       |                                   | 0.0201         | 0.00010  | mg/L         | 0.0200         |                  | 100           | 80-120           |       |               |           |
| Reference (B1L253                          | 80-SRM1)                          |                |          |              | Prepared       | : 2021-12-2      | 2, Analyze    | d: 2021-1        | 2-22  |               |           |
| Aluminum, dissolved                        |                                   | 0.239          | 0.0050   | mg/L         | 0.235          |                  | 102           | 70-130           |       |               |           |
| Antimony, dissolved                        |                                   | 0.0449         | 0.00020  |              | 0.0431         |                  | 104           | 70-130           |       |               |           |
| Arsenic, dissolved                         |                                   | 0.445          | 0.00050  |              | 0.423          |                  | 105           | 70-130           |       |               |           |
| Barium, dissolved                          |                                   | 3.13           | 0.0050   | mg/L         | 3.30           |                  | 95            | 70-130           |       |               |           |
| Beryllium, dissolved                       |                                   | 0.202          | 0.00010  | mg/L         | 0.209          |                  | 97            | 70-130           |       |               |           |
| Boron, dissolved                           |                                   | 1.63           | 0.0500   | mg/L         | 1.65           |                  | 99            | 70-130           |       |               |           |
| Cadmium, dissolved                         |                                   | 0.223          | 0.000010 |              | 0.221          |                  | 101           | 70-130           |       |               |           |
| Calcium, dissolved, di                     | ssolved                           | 7.06           |          | mg/L         | 7.72           |                  | 91            | 70-130           |       |               |           |
| Chromium, dissolved                        |                                   | 0.435          | 0.00050  |              | 0.434          |                  | 100           | 70-130           |       |               |           |
| Cobalt, dissolved                          |                                   | 0.132          | 0.00010  |              | 0.124          |                  | 106           | 70-130           |       |               |           |
| Copper, dissolved                          |                                   | 0.843          | 0.00040  |              | 0.815          |                  | 103           | 70-130           |       |               |           |
| Iron, dissolved                            |                                   | 1.30           |          | mg/L         | 1.27           |                  | 103           | 70-130           |       |               |           |
| Lead, dissolved                            |                                   | 0.113          | 0.00020  |              | 0.110          |                  | 103           | 70-130           |       |               |           |
| Lithium, dissolved                         | 1 41                              | 0.0981         | 0.00010  |              | 0.100          |                  | 98            | 70-130           |       |               |           |
| Magnesium, dissolved                       | •                                 | 6.87           |          | mg/L         | 6.59           |                  | 104           | 70-130<br>70-130 |       |               |           |
| Manganese, dissolved Molybdenum, dissolved |                                   | 0.348<br>0.412 | 0.00020  |              | 0.342          |                  | 102<br>102    | 70-130           |       |               |           |
| Nickel, dissolved                          | ,u                                | 0.412          | 0.00010  |              | 0.404<br>0.835 |                  | 102           | 70-130           |       |               |           |
| Phosphorus, dissolve                       | <u>-</u>                          | 0.862          |          | mg/L         | 0.635          |                  | 98            | 70-130           |       |               |           |
| Potassium, dissolved                       | <u> </u>                          | 2.94           |          | mg/L         | 2.88           |                  | 102           | 70-130           |       |               |           |
| Selenium, dissolved                        |                                   | 0.0337         | 0.00050  |              | 0.0324         |                  | 104           | 70-130           |       |               |           |
| Sodium, dissolved                          |                                   | 18.7           |          | mg/L         | 18.0           |                  | 104           | 70-130           |       |               |           |
| Strontium, dissolved                       |                                   | 0.864          | 0.0010   |              | 0.935          |                  | 92            | 70-130           |       |               |           |
| Thallium, dissolved                        |                                   | 0.0405         | 0.000020 |              | 0.0385         |                  | 105           | 70-130           |       |               |           |
| Uranium, dissolved                         |                                   | 0.257          | 0.000020 |              | 0.258          |                  | 100           | 70-130           |       |               |           |
|                                            |                                   |                |          |              |                |                  |               |                  |       |               |           |



| REPORTED TO Golder Associates PROJECT 20144760                       | s Ltd. (Kelowna) |                       |                |                  | WORK<br>REPOR | ORDER<br>RTED |       | 21L2571<br>2022-01-27 11:02 |           |  |
|----------------------------------------------------------------------|------------------|-----------------------|----------------|------------------|---------------|---------------|-------|-----------------------------|-----------|--|
| Analyte                                                              | Result           | RL Units              | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit  | % RPD | RPD<br>Limit                | Qualifier |  |
| Dissolved Metals, Batch B1L2530, Cont                                | tinued           |                       |                |                  |               |               |       |                             |           |  |
| Reference (B1L2530-SRM1), Continued                                  |                  |                       | Prepared       | l: 2021-12-2     | 22, Analyze   | ed: 2021-1    | 12-22 |                             |           |  |
| Zinc, dissolved                                                      | 0.852            | 0.0040 mg/L           | 0.848          |                  | 100           | 70-130        |       |                             |           |  |
| General Parameters, Batch B1L2044                                    |                  | J                     |                |                  |               |               |       |                             |           |  |
| Blank (B1L2044-BLK1)                                                 |                  |                       | Prepared       | l: 2021-12-1     | 17, Analyze   | ed: 2021-1    | 12-17 |                             |           |  |
| Alkalinity, Total (as CaCO3)                                         | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Phenolphthalein (as CaCO3)                               | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Bicarbonate (as CaCO3)                                   | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Carbonate (as CaCO3)                                     | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Hydroxide (as CaCO3)                                     | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Conductivity (EC)                                                    | < 2.0            | 2.0 µS/cm             |                |                  |               |               |       |                             |           |  |
| Blank (B1L2044-BLK2)                                                 |                  |                       | Prepared       | l: 2021-12-1     | 17, Analyze   | ed: 2021-1    | 12-17 |                             |           |  |
| Alkalinity, Total (as CaCO3)                                         | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Phenolphthalein (as CaCO3)                               | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Bicarbonate (as CaCO3)                                   | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Carbonate (as CaCO3)                                     | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Hydroxide (as CaCO3)  Conductivity (EC)                  | < 1.0<br>< 2.0   | 1.0 mg/L<br>2.0 μS/cm |                |                  |               |               |       |                             |           |  |
|                                                                      | < 2.0            | 2.0 μ3/cm             |                |                  |               |               |       |                             |           |  |
| Blank (B1L2044-BLK3)                                                 |                  |                       | Prepared       | l: 2021-12-1     | 7, Analyze    | ed: 2021-1    | 12-17 |                             |           |  |
| Alkalinity, Total (as CaCO3)                                         | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Phenolphthalein (as CaCO3)                               | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Alkalinity, Bicarbonate (as CaCO3)  Alkalinity, Carbonate (as CaCO3) | < 1.0<br>< 1.0   | 1.0 mg/L<br>1.0 mg/L  |                |                  |               |               |       |                             |           |  |
| Alkalinity, Hydroxide (as CaCO3)                                     | < 1.0            | 1.0 mg/L              |                |                  |               |               |       |                             |           |  |
| Conductivity (EC)                                                    | < 2.0            | 2.0 µS/cm             |                |                  |               |               |       |                             |           |  |
| LCS (B1L2044-BS1)                                                    |                  |                       | Prepared       | l: 2021-12-1     | 17 Analyze    | d· 2021-1     | 12-17 |                             |           |  |
| Alkalinity, Total (as CaCO3)                                         | 102              | 1.0 mg/L              | 100            | . 2021 12 1      | 102           | 80-120        |       |                             |           |  |
|                                                                      | 102              | 1.5 mg/L              |                | L 0004 40 4      |               |               | 10.47 |                             |           |  |
| LCS (B1L2044-BS2)                                                    | 00.5             | 4.0 "                 | •              | l: 2021-12-1     | •             |               | 12-17 |                             |           |  |
| Alkalinity, Total (as CaCO3)                                         | 99.5             | 1.0 mg/L              | 100            |                  | 100           | 80-120        |       |                             |           |  |
| LCS (B1L2044-BS3)                                                    |                  |                       | Prepared       | l: 2021-12-1     | 7, Analyze    | ed: 2021-1    | 12-17 |                             |           |  |
| Alkalinity, Total (as CaCO3)                                         | 102              | 1.0 mg/L              | 100            |                  | 102           | 80-120        |       |                             |           |  |
| LCS (B1L2044-BS4)                                                    |                  |                       | Prepared       | l: 2021-12-1     | 17, Analyze   | ed: 2021-1    | 12-17 |                             |           |  |
| Conductivity (EC)                                                    | 1440             | 2.0 μS/cm             | 1410           |                  | 102           | 95-105        |       |                             |           |  |
| LCS (B1L2044-BS5)                                                    |                  |                       | Prepared       | l: 2021-12-1     | 7. Analvze    | ed: 2021-1    | 12-17 |                             |           |  |
| Conductivity (EC)                                                    | 1440             | 2.0 µS/cm             | 1410           |                  | 102           | 95-105        |       |                             |           |  |
| LCS (B1L2044-BS6)                                                    |                  |                       |                | l: 2021-12-1     |               |               | 12 17 |                             |           |  |
| Conductivity (EC)                                                    | 1440             | 2.0 µS/cm             | 1410           | 1. 2021-12-1     | 102           | 95-105        | 12-17 |                             |           |  |
|                                                                      | 1440             | 2.0 μ3/cm             |                |                  |               |               |       |                             |           |  |
| Reference (B1L2044-SRM1)                                             | 7.00             | 0.40 14 14            | •              | l: 2021-12-1     |               |               | 12-17 |                             |           |  |
| рН                                                                   | 7.03             | 0.10 pH units         | 7.01           |                  | 100           | 98-102        |       |                             |           |  |
| Reference (B1L2044-SRM2)                                             |                  |                       | Prepared       | l: 2021-12-1     | 17, Analyze   | ed: 2021-1    | 12-17 |                             |           |  |
| рН                                                                   | 7.04             | 0.10 pH units         | 7.01           |                  | 100           | 98-102        |       |                             |           |  |
| Reference (B1L2044-SRM3)                                             |                  |                       | Prepared       | l: 2021-12-1     | 18, Analyze   | ed: 2021-1    | 12-18 |                             |           |  |
| pH                                                                   | 7.04             | 0.10 pH units         | 7.01           |                  | 100           | 98-102        |       |                             |           |  |
| · · · · · · · · · · · · · · · · · · ·                                |                  |                       |                |                  |               |               |       |                             |           |  |

General Parameters, Batch B1L2051



| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | older Associates Ltd. (Kelov<br>0144760 | vna)         |          |              | WORK<br>REPOR | ORDER<br>RTED |       | 2571<br>2-01-27 | 11:02     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--------------|----------|--------------|---------------|---------------|-------|-----------------|-----------|
| Prepared: 2021-12-17, Analyzed: 2021-12-17   Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                  | Resu                                    | lt RL Unit   | is ·     |              | % REC         |               | % RPD |                 | Qualifier |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General Parameters, E    | Batch B1L2051, Continued                |              |          |              |               |               |       |                 |           |
| Prepared: 2021-12-17, Analyzed: 2021-12-17   Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blank (B1L2051-BLK1      | )                                       |              | Prepared | l: 2021-12-1 | 7, Analyze    | ed: 2021-1    | 12-17 |                 |           |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turbidity                | < 0.1                                   | 0 0.10 NTU   | l        |              |               |               |       |                 |           |
| Prepared: 2021-12-17, Analyzed: 2021-12-17   Turbidity   37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blank (B1L2051-BLK2      | )                                       |              | Prepared | l: 2021-12-1 | 7, Analyze    | ed: 2021-1    | 12-17 |                 |           |
| Turbidity   37.2   0.10 NTU   40.0   93   90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turbidity                | < 0.1                                   | 0 0.10 NTU   | l        |              |               |               |       |                 |           |
| Turbidity   37.2   0.10 NTU   40.0   93   90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCS (B1L2051-BS1)        |                                         |              | Prepared | l: 2021-12-1 | 7, Analyze    | ed: 2021-1    | 12-17 |                 |           |
| Turbidity   37.0   0.10 NTU   40.0   92   90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | 37.                                     | 2 0.10 NTU   |          |              |               |               |       |                 |           |
| Turbidity   37.0   0.10 NTU   40.0   92   90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCS (B1L2051-BS2)        |                                         |              | Prepared | l: 2021-12-1 | 7, Analyze    | ed: 2021-1    | 12-17 |                 |           |
| Prepared: 2021-12-20, Analyzed: 2021-12-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 37.                                     | 0 0.10 NTU   |          |              |               |               |       |                 |           |
| Ammonia, Total (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | General Parameters, E    | Batch B1L2163                           |              |          |              |               |               |       |                 |           |
| Blank (B1L2163-BLK2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blank (B1L2163-BLK1      | )                                       |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-20 |                 |           |
| Ammonia, Total (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ammonia, Total (as N)    | < 0.05                                  | 0 0.050 mg/l | -        |              | -             |               |       |                 |           |
| Ammonia, Total (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blank (B1L2163-BLK2      | )                                       |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-20 |                 |           |
| Ammonia, Total (as N)  CS (B1L2163-BS1)  Prepared: 2021-12-20, Analyzed: 2021-12-20  Ammonia, Total (as N)  1.01  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-20  Ammonia, Total (as N)  1.04  0.050 mg/L  1.00  104  90-115  LCS (B1L2163-BS2)  Prepared: 2021-12-20, Analyzed: 2021-12-20  Ammonia, Total (as N)  1.04  0.050 mg/L  1.00  104  90-115  LCS (B1L2163-BS3)  Prepared: 2021-12-20, Analyzed: 2021-12-20  Ammonia, Total (as N)  1.01  0.050 mg/L  1.00  101  90-115  General Parameters, Batch B1L2247  Blank (B1L2247-BLK1)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  0.050  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  CS (B1L2247-BS2)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  General Parameters, Batch B1L2275  Blank (B1L2275-BLK1)  Prepared: 2021-12-21, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  Prepared: 2021-12-21, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  Prepared: 2021-12-21, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  Prepared: 2021-12-21, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  Prepared: 2021-12-21, Analyzed: 2021-12-21  Prepared: 2021-12-21, Analyzed: 2021-12-21  Prepared: 2021-12-21, Analyzed: 2021-12-21  Prepared: 2021-12-21, Analyzed: 2021-12-21 |                          | ,                                       | 0 0.050 mg/l | _        |              |               |               |       |                 |           |
| Prepared: 2021-12-20, Analyzed: 2021-12-20   Ammonia, Total (as N)   1.01   0.050 mg/L   1.00   101   90-115     LCS (B1L2163-BS2)   Prepared: 2021-12-20, Analyzed: 2021-12-20   Ammonia, Total (as N)   1.04   0.050 mg/L   1.00   104   90-115     LCS (B1L2163-BS3)   Prepared: 2021-12-20, Analyzed: 2021-12-20   Ammonia, Total (as N)   1.01   0.050 mg/L   1.00   101   90-115     LCS (B1L2163-BS3)   Prepared: 2021-12-20, Analyzed: 2021-12-20     Ammonia, Total (as N)   1.01   0.050 mg/L   1.00   101   90-115     General Parameters, Batch B1L2247   Blank (B1L2247-BLK1)   Prepared: 2021-12-20, Analyzed: 2021-12-21     Nitrogen, Total Kjeldahl   < 0.050   0.050 mg/L     LCS (B1L2247-BS1)   Prepared: 2021-12-20, Analyzed: 2021-12-21     Nitrogen, Total Kjeldahl   1.08   0.050 mg/L   1.00   108   85-115     LCS (B1L2247-BS2)   Prepared: 2021-12-20, Analyzed: 2021-12-21     Nitrogen, Total Kjeldahl   1.08   0.050 mg/L   1.00   108   85-115     LCS (B1L2247-BS2)   Prepared: 2021-12-20, Analyzed: 2021-12-21     Nitrogen, Total Kjeldahl   1.08   0.050 mg/L   1.00   108   85-115     General Parameters, Batch B1L2275     Blank (B1L2275-BLK1)   Prepared: 2021-12-21, Analyzed: 2021-12-21     Solids, Total Dissolved   <15   15 mg/L     LCS (B1L2275-BS1)   Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                  | Blank (B1L2163-BLK3      | )                                       |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-20 |                 |           |
| Ammonia, Total (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ammonia, Total (as N)    | < 0.05                                  | 0 0.050 mg/l | _        |              | <u> </u>      |               |       |                 |           |
| LCS (B1L2163-BS2)         Prepared: 2021-12-20, Analyzed: 2021-12-20           Ammonia, Total (as N)         1.04         0.050 mg/L         1.00         104         90-115           LCS (B1L2163-BS3)         Prepared: 2021-12-20, Analyzed: 2021-12-20           Ammonia, Total (as N)         1.01         0.050 mg/L         1.00         101         90-115           General Parameters, Batch B1L2247           Blank (B1L2247-BLK1)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         < 0.050         0.050 mg/L           Blank (B1L2247-BLK2)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         < 0.050         0.050 mg/L           LCS (B1L2247-BS1)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         1.08         0.050 mg/L         1.00         108         85-115           LCS (B1L2247-BS2)         Prepared: 2021-12-20, Analyzed: 2021-12-21         Nitrogen, Total Kjeldahl         1.08         0.050 mg/L         1.00         108         85-115           General Parameters, Batch B1L2275         Blank (B1L2275-BLK1)         Prepared: 2021-12-21, Analyzed: 2021-12-21         Prepared: 2021-12-21, Analyzed: 2021-12-21           Solids, Total Dissolved         < 15         15 mg/L         Prepared                                                                                                                                                                                                                                                                      | LCS (B1L2163-BS1)        |                                         |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-20 |                 |           |
| Ammonia, Total (as N)  LCS (B1L2163-BS3)  Prepared: 2021-12-20, Analyzed: 2021-12-20  Ammonia, Total (as N)  1.01  0.050 mg/L  1.00  101  90-115  General Parameters, Batch B1L2247  Blank (B1L2247-BLK1)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl <ul> <li>0.050 mg/L</li> <li>Prepared: 2021-12-20, Analyzed: 2021-12-21</li> </ul> <li>Blank (B1L2247-BLK2)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  <ul> <li>0.050 mg/L</li> </ul> </li> <li>LCS (B1L2247-BS1)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  LCS (B1L2247-BS2)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  General Parameters, Batch B1L2275  Blank (B1L2275-BLK1)  Prepared: 2021-12-21, Analyzed: 2021-12-21  Solids, Total Dissolved  <ul> <li>15 mg/L</li> <li>LCS (B1L2275-BS1)</li> <li>Prepared: 2021-12-21, Analyzed: 2021-12-21</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                        | 1.0                                     | 1 0.050 mg/l |          |              |               |               |       |                 |           |
| Ammonia, Total (as N)  LCS (B1L2163-BS3)  Prepared: 2021-12-20, Analyzed: 2021-12-20  Ammonia, Total (as N)  1.01  0.050 mg/L  1.00  101  90-115  General Parameters, Batch B1L2247  Blank (B1L2247-BLK1)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl <ul> <li>0.050 mg/L</li> <li>Prepared: 2021-12-20, Analyzed: 2021-12-21</li> </ul> <li>Blank (B1L2247-BLK2)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  <ul> <li>0.050 mg/L</li> </ul> </li> <li>LCS (B1L2247-BS1)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  LCS (B1L2247-BS2)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  General Parameters, Batch B1L2275  Blank (B1L2275-BLK1)  Prepared: 2021-12-21, Analyzed: 2021-12-21  Solids, Total Dissolved  <ul> <li>15 mg/L</li> <li>LCS (B1L2275-BS1)</li> <li>Prepared: 2021-12-21, Analyzed: 2021-12-21</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCS (B1L2163-BS2)        |                                         |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-20 |                 |           |
| Ammonia, Total (as N)  1.01  0.050 mg/L  1.00  101  90-115  General Parameters, Batch B1L2247  Blank (B1L2247-BLK1)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  <0.050  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  <0.050  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  LCS (B1L2247-BS2)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  General Parameters, Batch B1L2275  Blank (B1L2275-BLK1)  Prepared: 2021-12-21, Analyzed: 2021-12-21  Solids, Total Dissolved  <15  15 mg/L  LCS (B1L2275-BS1)  Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ammonia, Total (as N)    | 1.0                                     | 4 0.050 mg/l | _ 1.00   |              | 104           | 90-115        |       |                 |           |
| Ammonia, Total (as N)  1.01  0.050 mg/L  1.00  101  90-115  General Parameters, Batch B1L2247  Blank (B1L2247-BLK1)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  <0.050  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  <0.050  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  LCS (B1L2247-BS2)  Prepared: 2021-12-20, Analyzed: 2021-12-21  Nitrogen, Total Kjeldahl  1.08  0.050 mg/L  1.00  108  85-115  General Parameters, Batch B1L2275  Blank (B1L2275-BLK1)  Prepared: 2021-12-21, Analyzed: 2021-12-21  Solids, Total Dissolved  <15  15 mg/L  LCS (B1L2275-BS1)  Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCS (B1L2163-BS3)        |                                         |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-20 |                 |           |
| Blank (B1L2247-BLK1)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         < 0.050         0.050 mg/L           Blank (B1L2247-BLK2)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         < 0.050         0.050 mg/L           LCS (B1L2247-BS1)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         1.08         0.050 mg/L         1.00         108         85-115           LCS (B1L2247-BS2)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         1.08         0.050 mg/L         1.00         108         85-115           General Parameters, Batch B1L2275         Blank (B1L2275-BLK1)         Prepared: 2021-12-21, Analyzed: 2021-12-21           Solids, Total Dissolved         < 15         15 mg/L           LCS (B1L2275-BS1)         Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 1.0                                     | 1 0.050 mg/l | 1.00     |              | 101           | 90-115        |       |                 |           |
| Nitrogen, Total Kjeldahl         < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Parameters, E    | Batch B1L2247                           |              |          |              |               |               |       |                 |           |
| Blank (B1L2247-BLK2)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         < 0.050 mg/L           LCS (B1L2247-BS1)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         1.08 0.050 mg/L         1.00 108 85-115           LCS (B1L2247-BS2)         Prepared: 2021-12-20, Analyzed: 2021-12-21           Nitrogen, Total Kjeldahl         1.08 0.050 mg/L         1.00 108 85-115           General Parameters, Batch B1L2275           Blank (B1L2275-BLK1)         Prepared: 2021-12-21, Analyzed: 2021-12-21           Solids, Total Dissolved         < 15 mg/L           LCS (B1L2275-BS1)         Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blank (B1L2247-BLK1      | )                                       |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-21 |                 |           |
| Nitrogen, Total Kjeldahl         < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nitrogen, Total Kjeldahl | < 0.05                                  | 0 0.050 mg/l | -        |              |               |               |       |                 |           |
| LCS (B1L2247-BS1)       Prepared: 2021-12-20, Analyzed: 2021-12-21         Nitrogen, Total Kjeldahl       1.08       0.050 mg/L       1.00       108       85-115         LCS (B1L2247-BS2)       Prepared: 2021-12-20, Analyzed: 2021-12-21         Nitrogen, Total Kjeldahl       1.08       0.050 mg/L       1.00       108       85-115         General Parameters, Batch B1L2275         Blank (B1L2275-BLK1)       Prepared: 2021-12-21, Analyzed: 2021-12-21         Solids, Total Dissolved       < 15       15 mg/L         LCS (B1L2275-BS1)       Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Blank (B1L2247-BLK2      | )                                       |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-21 |                 |           |
| Nitrogen, Total Kjeldahl       1.08       0.050 mg/L       1.00       108       85-115         LCS (B1L2247-BS2)       Prepared: 2021-12-20, Analyzed: 2021-12-21         Nitrogen, Total Kjeldahl       1.08       0.050 mg/L       1.00       108       85-115         General Parameters, Batch B1L2275         Blank (B1L2275-BLK1)       Prepared: 2021-12-21, Analyzed: 2021-12-21         Solids, Total Dissolved       < 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nitrogen, Total Kjeldahl | < 0.05                                  | 0 0.050 mg/l | -        |              |               |               |       |                 |           |
| Nitrogen, Total Kjeldahl       1.08       0.050 mg/L       1.00       108       85-115         LCS (B1L2247-BS2)       Prepared: 2021-12-20, Analyzed: 2021-12-21         Nitrogen, Total Kjeldahl       1.08       0.050 mg/L       1.00       108       85-115         General Parameters, Batch B1L2275         Blank (B1L2275-BLK1)       Prepared: 2021-12-21, Analyzed: 2021-12-21         Solids, Total Dissolved       < 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCS (B1L2247-BS1)        |                                         |              | Prepared | l: 2021-12-2 | 0, Analyze    | ed: 2021-1    | 12-21 |                 |           |
| Nitrogen, Total Kjeldahl       1.08       0.050 mg/L       1.00       108       85-115         General Parameters, Batch B1L2275       Prepared: 2021-12-21, Analyzed: 2021-12-21         Solids, Total Dissolved       < 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nitrogen, Total Kjeldahl | 1.0                                     | 8 0.050 mg/l | •        |              |               |               |       |                 |           |
| Nitrogen, Total Kjeldahl         1.08         0.050 mg/L         1.00         108         85-115           General Parameters, Batch B1L2275         Prepared: 2021-12-21, Analyzed: 2021-12-21           Solids, Total Dissolved         < 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCS (B1L2247-BS2)        |                                         |              | Prepared | : 2021-12-2  | 0, Analyze    | ed: 2021-1    | 12-21 |                 |           |
| Blank (B1L2275-BLK1)         Prepared: 2021-12-21, Analyzed: 2021-12-21           Solids, Total Dissolved         < 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrogen, Total Kjeldahl | 1.0                                     | 8 0.050 mg/l | 1.00     |              | 108           | 85-115        |       |                 |           |
| Solids, Total Dissolved         < 15         15 mg/L           LCS (B1L2275-BS1)         Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General Parameters, E    | Batch B1L2275                           |              |          |              |               |               |       |                 |           |
| Solids, Total Dissolved         < 15         15 mg/L           LCS (B1L2275-BS1)         Prepared: 2021-12-21, Analyzed: 2021-12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Blank (B1L2275-BLK1      | )                                       |              | Prepared | l: 2021-12-2 | 1, Analyze    | ed: 2021-1    | 12-21 |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                        | •                                       | 515 mg/l     |          |              |               |               |       |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCS (B1L2275-BS1)        |                                         |              | Prepared | l: 2021-12-2 | 1, Analyze    | ed: 2021-1    | 12-21 |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                        | 24                                      | 0 15 mg/l    | -        |              |               |               |       |                 |           |

Microbiological Parameters, Batch B1L2016



| REPORTED TO | Golder Associates Ltd. (Kelowna) | WORK ORDER | 21L2571          |
|-------------|----------------------------------|------------|------------------|
| PROJECT     | 20144760                         | REPORTED   | 2022-01-27 11:02 |

| Analyte                             | Result             | RL Units      | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
|-------------------------------------|--------------------|---------------|----------------|------------------|-------------|--------------|-------|--------------|-----------|
| Microbiological Parameters, Batch E | 31L2016, Continued |               |                |                  |             |              |       |              |           |
| Blank (B1L2016-BLK1)                |                    |               | Prepared       | I: 2021-12-1     | 17, Analyze | d: 2021-     | 12-17 |              |           |
| Coliforms, Total (Q-Tray)           | < 1                | 1 MPN/100     | mL             |                  |             |              |       |              |           |
| E. coli (Q-Tray)                    | < 1                | 1 MPN/100     | mL             |                  |             |              |       |              |           |
| Blank (B1L2016-BLK2)                |                    |               | Prepared       | I: 2021-12-1     | 17, Analyze | d: 2021-     | 12-17 |              |           |
| Coliforms, Fecal (Q-Tray)           | < 1                | 1 MPN/100     | mL             |                  |             |              |       |              |           |
| E. coli (Q-Tray)                    | < 1                | 1 MPN/100     | mL             |                  |             |              |       |              |           |
| Duplicate (B1L2016-DUP1)            | Sourc              | e: 21L2571-01 | Prepared       | I: 2021-12-1     | 7, Analyze  | d: 2021-     | 12-17 |              |           |
| Coliforms, Total (Q-Tray)           | < 1                | 1 MPN/100     | mL             | < 1              |             |              |       | 80           | RS2       |
| E. coli (Q-Tray)                    | < 1                | 1 MPN/100     | mL             | < 1              |             |              |       | 80           | RS2       |

#### Total Metals, Batch B1L2383

| Blank (B1L2383-BLK1) |            |               | Prepared: 2021-12-21, Analyzed: 2021-12-23 |
|----------------------|------------|---------------|--------------------------------------------|
| Aluminum, total      | < 0.0050   | 0.0050 mg/L   |                                            |
| Antimony, total      | < 0.00020  | 0.00020 mg/L  |                                            |
| Arsenic, total       | < 0.00050  | 0.00050 mg/L  |                                            |
| Barium, total        | < 0.0050   | 0.0050 mg/L   |                                            |
| Beryllium, total     | < 0.00010  | 0.00010 mg/L  |                                            |
| Bismuth, total       | < 0.00010  | 0.00010 mg/L  |                                            |
| Boron, total         | < 0.0500   | 0.0500 mg/L   |                                            |
| Cadmium, total       | < 0.000010 | 0.000010 mg/L |                                            |
| Calcium, total       | < 0.20     | 0.20 mg/L     |                                            |
| Chromium, total      | < 0.00050  | 0.00050 mg/L  |                                            |
| Cobalt, total        | < 0.00010  | 0.00010 mg/L  |                                            |
| Copper, total        | < 0.00040  | 0.00040 mg/L  |                                            |
| Iron, total          | < 0.010    | 0.010 mg/L    |                                            |
| Lead, total          | < 0.00020  | 0.00020 mg/L  |                                            |
| Lithium, total       | < 0.00010  | 0.00010 mg/L  |                                            |
| Magnesium, total     | < 0.010    | 0.010 mg/L    |                                            |
| Manganese, total     | < 0.00020  | 0.00020 mg/L  |                                            |
| Mercury, total       | < 0.000040 | 0.000040 mg/L |                                            |
| Molybdenum, total    | < 0.00010  | 0.00010 mg/L  |                                            |
| Nickel, total        | < 0.00040  | 0.00040 mg/L  |                                            |
| Phosphorus, total    | < 0.050    | 0.050 mg/L    |                                            |
| Potassium, total     | < 0.10     | 0.10 mg/L     |                                            |
| Selenium, total      | < 0.00050  | 0.00050 mg/L  |                                            |
| Silicon, total       | < 1.0      | 1.0 mg/L      |                                            |
| Silver, total        | < 0.000050 | 0.000050 mg/L |                                            |
| Sodium, total        | < 0.10     | 0.10 mg/L     |                                            |
| Strontium, total     | < 0.0010   | 0.0010 mg/L   |                                            |
| Sulfur, total        | < 3.0      | 3.0 mg/L      |                                            |
| Tellurium, total     | < 0.00050  | 0.00050 mg/L  |                                            |
| Thallium, total      | < 0.000020 | 0.000020 mg/L |                                            |
| Thorium, total       | < 0.00010  | 0.00010 mg/L  |                                            |
| Tin, total           | < 0.00020  | 0.00020 mg/L  |                                            |
| Titanium, total      | < 0.0050   | 0.0050 mg/L   |                                            |
| Tungsten, total      | < 0.0010   | 0.0010 mg/L   |                                            |
| Uranium, total       | < 0.000020 | 0.000020 mg/L |                                            |
| Vanadium, total      | < 0.0010   | 0.0010 mg/L   |                                            |
| Zinc, total          | < 0.0040   | 0.0040 mg/L   |                                            |
| Zirconium, total     | < 0.00010  | 0.00010 mg/L  |                                            |
| LCS (B1L2383-BS1)    |            |               | Prepared: 2021-12-21, Analyzed: 2021-12-23 |
| Aluminum, total      | 0.0226     | 0.0050 mg/L   | 0.0200 113 80-120                          |
| Antimony, total      | 0.0189     | 0.00020 mg/L  | 0.0200 95 80-120                           |



|                                    | der Associates Ltd. (Kelown<br>44760 | a)                     |          |                |                  | WORK<br>REPOR     | ORDER<br>TED     | 21L2<br>2022 | 571<br>-01-27 | 11:02     |
|------------------------------------|--------------------------------------|------------------------|----------|----------------|------------------|-------------------|------------------|--------------|---------------|-----------|
| Analyte                            | Result                               | RL U                   | mis      | Spike<br>Level | Source<br>Result | % REC             | REC<br>Limit     | % RPD        | RPD<br>Limit  | Qualifier |
| Total Metals, Batch B1L            | 2383, Continued                      |                        |          |                |                  |                   |                  |              |               |           |
| LCS (B1L2383-BS1), Co              | ntinued                              |                        | Р        | repared        | d: 2021-12-2     | 1, Analyze        | d: 2021-1        | 2-23         |               |           |
| Arsenic, total                     | 0.0176                               | 0.00050 m              | a/L (    | 0.0200         |                  | 88                | 80-120           |              |               |           |
| Barium, total                      | 0.0182                               | 0.0050 m               |          | 0.0200         |                  | 91                | 80-120           |              |               |           |
| Beryllium, total                   | 0.0176                               | 0.00010 m              |          | 0.0200         |                  | 88                | 80-120           |              |               |           |
| Bismuth, total                     | 0.0194                               | 0.00010 m              | g/L (    | 0.0200         |                  | 97                | 80-120           |              |               |           |
| Boron, total                       | < 0.0500                             | 0.0500 m               | g/L (    | 0.0200         |                  | 87                | 80-120           |              |               |           |
| Cadmium, total                     | 0.0187                               | 0.000010 m             | g/L (    | 0.0200         |                  | 93                | 80-120           |              |               |           |
| Calcium, total                     | 1.89                                 | 0.20 m                 | g/L      | 2.00           |                  | 95                | 80-120           |              |               |           |
| Chromium, total                    | 0.0185                               | 0.00050 m              | g/L (    | 0.0200         |                  | 93                | 80-120           |              |               |           |
| Cobalt, total                      | 0.0193                               | 0.00010 m              | g/L (    | 0.0200         |                  | 96                | 80-120           |              |               |           |
| Copper, total                      | 0.0189                               | 0.00040 m              |          | 0.0200         |                  | 94                | 80-120           |              |               |           |
| Iron, total                        | 1.86                                 | 0.010 m                |          | 2.00           |                  | 93                | 80-120           |              |               |           |
| Lead, total                        | 0.0191                               | 0.00020 m              |          | 0.0200         |                  | 96                | 80-120           |              |               |           |
| Lithium, total                     | 0.0180                               | 0.00010 m              | g/L (    | 0.0200         |                  | 90                | 80-120           |              |               |           |
| Magnesium, total                   | 1.96                                 | 0.010 m                | g/L      | 2.00           |                  | 98                | 80-120           |              |               |           |
| Manganese, total                   | 0.0192                               | 0.00020 m              |          | 0.0200         |                  | 96                | 80-120           |              |               |           |
| Mercury, total                     | 0.000886                             | 0.000040 m             |          | .00101         |                  | 88                | 80-120           |              |               |           |
| Molybdenum, total                  | 0.0189                               | 0.00010 m              | g/L (    | 0.0200         |                  | 94                | 80-120           |              |               |           |
| Nickel, total                      | 0.0190                               | 0.00040 m              | g/L (    | 0.0200         |                  | 95                | 80-120           |              |               |           |
| Phosphorus, total                  | 1.62                                 | 0.050 m                |          | 2.00           |                  | 81                | 80-120           |              |               |           |
| Potassium, total                   | 1.77                                 | 0.10 m                 | -        | 2.00           |                  | 89                | 80-120           |              |               |           |
| Selenium, total                    | 0.0180                               | 0.00050 m              | -        | 0.0200         |                  | 90                | 80-120           |              |               |           |
| Silicon, total                     | 1.9                                  | 1.0 m                  | <u> </u> | 2.00           |                  | 95                | 80-120           |              |               |           |
| Silver, total                      | 0.0195                               | 0.000050 m             |          | 0.0200         |                  | 97                | 80-120           |              |               |           |
| Sodium, total                      | 1.78                                 | 0.10 m                 |          | 2.00           |                  | 89                | 80-120           |              |               |           |
| Strontium, total                   | 0.0171                               | 0.0010 m               |          | 0.0200         |                  | 86                | 80-120           |              |               |           |
| Sulfur, total                      | 5.1                                  | 3.0 m                  |          | 5.00           |                  | 101               | 80-120           |              |               |           |
| Tellurium, total                   | 0.0191                               | 0.00050 m              |          | 0.0200         |                  | 96                | 80-120           |              |               |           |
| Thallium, total                    | 0.0193                               | 0.000020 m             |          | 0.0200         |                  | 96                | 80-120           |              |               |           |
| Thorium, total                     | 0.0207                               | 0.00010 m              |          | 0.0200         |                  | 103               | 80-120           |              |               |           |
| Tin, total                         | 0.0197                               | 0.00020 m              | <u> </u> | 0.0200         |                  | 98                | 80-120           |              |               |           |
| Titanium, total                    | 0.0206                               | 0.0050 m               |          | 0.0200         |                  | 103<br>97         | 80-120           |              |               |           |
| Tungsten, total                    | 0.0193                               | 0.0010 m               |          | 0.0200         |                  |                   | 80-120           |              |               |           |
| Uranium, total                     | 0.0207<br>0.0183                     | 0.000020 m             |          | 0.0200         |                  | 103               | 80-120<br>80-120 |              |               |           |
| Vanadium, total Zinc, total        | 0.0183                               | 0.0010 m               |          | 0.0200         |                  | 91<br>94          | 80-120           |              |               |           |
| Zirconium, total                   | 0.0197                               | 0.0040 m               |          | 0.0200         |                  | 98                | 80-120           |              |               |           |
| Reference (B1L2383-SR              |                                      | J.00010 III            |          |                | d: 2021-12-2     |                   |                  | 2-33<br>     |               |           |
| Aluminum, total                    | 0.214                                | 0.0050 m               |          | 0.198          | 1. 2021-12-2     | 1, Analyze<br>108 | 70-130           | 2-23         |               |           |
| Antimony, total                    | 0.0242                               | 0.00000 m              |          | 0.190          |                  | 105               | 70-130           |              |               |           |
| Artimony, total                    | 0.0194                               | 0.00020 m              |          | 0.0200         |                  | 97                | 70-130           |              |               |           |
| Barium, total                      | 0.0160                               | 0.0050 m               |          | 0.0200         |                  | 100               | 70-130           |              |               |           |
| Beryllium, total                   | 0.00393                              | 0.0000 m               |          | .00384         |                  | 102               | 70-130           |              |               |           |
| Boron, total                       | 0.178                                | 0.0500 m               |          | 0.191          |                  | 93                | 70-130           |              |               |           |
| Cadmium, total                     | 0.00408                              | 0.000010 m             |          | .00404         |                  | 101               | 70-130           |              |               |           |
| Calcium, total                     | 1.02                                 | 0.20 m                 |          | 0.938          |                  | 109               | 70-130           |              |               |           |
| Chromium, total                    | 0.0265                               | 0.00050 m              |          | 0.0256         |                  | 104               | 70-130           |              |               |           |
| Cobalt, total                      | 0.0229                               | 0.00010 m              |          | 0.0214         |                  | 107               | 70-130           |              |               |           |
| Copper, total                      | 0.0337                               | 0.00040 m              |          | 0.0322         |                  | 105               | 70-130           |              |               |           |
| Iron, total                        | 0.059                                | 0.010 m                | <u> </u> | 0.0580         |                  | 102               | 70-130           |              |               |           |
| Lead, total                        | 0.00836                              | 0.00020 m              |          | .00796         |                  | 105               | 70-130           |              |               |           |
| Lithium, total                     | 0.00999                              | 0.00010 m              |          | 0.0102         |                  | 98                | 70-130           |              |               |           |
| Magnesium, total                   | 0.122                                | 0.010 m                |          | 0.112          |                  | 109               | 70-130           |              |               |           |
|                                    |                                      |                        |          |                |                  |                   |                  |              |               |           |
| Manganese, total                   | 0.0129                               | 0.00020 m              | g/L (    | 0.0120         |                  | 107               | 70-130           |              |               |           |
| Manganese, total Molybdenum, total | 0.0129                               | 0.00020 m<br>0.00010 m | -        | 0.0120         |                  | 107               | 70-130           |              |               |           |



 REPORTED TO
 Golder Associates Ltd. (Kelowna)
 WORK ORDER
 21L2571

 PROJECT
 20144760
 REPORTED
 2022-01-27 11:02

|                                        |        |               |                |                  |             |              |       | · · · - ·    |           |
|----------------------------------------|--------|---------------|----------------|------------------|-------------|--------------|-------|--------------|-----------|
| Analyte                                | Result | RL Units      | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | % RPD | RPD<br>Limit | Qualifier |
| Total Metals, Batch B1L2383, Continued |        |               |                |                  |             |              |       |              |           |
| Reference (B1L2383-SRM1), Continued    |        |               | Prepared       | l: 2021-12-2     | 21, Analyze | d: 2021-     | 12-23 |              |           |
| Potassium, total                       | 0.76   | 0.10 mg/L     | 0.820          |                  | 93          | 70-130       |       |              |           |
| Selenium, total                        | 0.123  | 0.00050 mg/L  | 0.117          |                  | 105         | 70-130       |       |              |           |
| Sodium, total                          | 0.41   | 0.10 mg/L     | 0.490          |                  | 84          | 70-130       |       |              |           |
| Strontium, total                       | 0.267  | 0.0010 mg/L   | 0.276          |                  | 97          | 70-130       |       |              |           |
| Thallium, total                        | 0.0126 | 0.000020 mg/L | 0.0118         |                  | 107         | 70-130       |       |              |           |
| Uranium, total                         | 0.0106 | 0.000020 mg/L | 0.00970        |                  | 110         | 70-130       |       |              |           |
| Vanadium, total                        | 0.0281 | 0.0010 mg/L   | 0.0274         |                  | 103         | 70-130       |       |              |           |
| Zinc, total                            | 0.0855 | 0.0040 mg/L   | 0.0884         |                  | 97          | 70-130       |       |              |           |
|                                        |        |               |                |                  |             |              |       |              |           |

#### QC Qualifiers:

RS2 The Reporting Limits for this sample have been raised due to limited sample volume.

| _            |
|--------------|
| 10           |
| 03           |
|              |
|              |
| EQU          |
| -            |
| (3)          |
|              |
|              |
| 00           |
|              |
|              |
|              |
| SIS          |
|              |
| CO           |
| 00           |
| >            |
| -            |
|              |
| -            |
| Q            |
|              |
| -            |
| -            |
| -            |
| -            |
| 0            |
| li-          |
| n            |
|              |
|              |
| -            |
| ()           |
| -            |
| RECORD       |
|              |
|              |
| 00           |
| land on      |
| CUSTODY R    |
| CUSTODY      |
| CUSTODY      |
| CUSTODY      |
| land on      |
| CUSTODY      |
| OF CUSTODY F |
| CUSTODY      |
| OF CUSTODY F |

No.12411 page Lof 1 12

| Project Number: 2010             | 09±h1       | 13.0         |                               |             | Laboratory Name:          | plemna      | 0        |
|----------------------------------|-------------|--------------|-------------------------------|-------------|---------------------------|-------------|----------|
| Short Title:<br>Keddleston Pk. A | 6W Stro     | l u          | Golder Contact:               | Jasopoulo   | Address: + 107-3677 Hwy 9 | WH FF       | M + b    |
| Golder E-mail Address 1:         | @golder.com | 3older E-mai | Golder E-mail Address 2: (@go | @golder.com | Telephone/Fax:            | 1 88 46 con | Contact: |

| _age                    |                                                                                           |                    | _                                   | _                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |      |      |      |      |      |          |      |      |      |     |                            |                      |
|-------------------------|-------------------------------------------------------------------------------------------|--------------------|-------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|------|------|------|------|----------|------|------|------|-----|----------------------------|----------------------|
| Address:                |                                                                                           | H=+ 0              | Luile                               | MIP DIS                                    | Pecial Selection of the Colors of the Colors of the Color | XX         |      |      |      |      |      |      |          |      |      |      |     | Company                    | Time   1 - 1 - 1     |
| 13 Hwy                  | 8846                                                                                      | of infil           | 1011                                |                                            | a bowlossik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X          |      |      |      |      |      |      |          |      |      |      |     | Signature                  | Date 12/16/2         |
| 185:                    | Telephone/Fax:                                                                            | Analyses Required  | 7                                   | 55                                         | dout, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×××        |      |      |      |      |      |      |          |      |      |      |     | Received by: Signature     |                      |
| Addre                   | @golder.com                                                                               | A                  | Hivi                                | but<br>hud                                 | 160110<br>2.coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXX        |      |      |      | Z    |      |      |          |      |      |      |     | Time                       | Received for Lab by: |
| Contact:                | -                                                                                         |                    | ers                                 | nisino                                     | Number of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / X t      |      |      |      |      |      |      |          |      |      |      |     |                            | Receiv               |
| Golder Contact:         | Solder E-mail Address 2:                                                                  |                    | gular (5 Days)                      |                                            | Related SCN (over)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |      |      |      |      | 2    |      |          |      |      |      |     | Date                       |                      |
| GW Shudu                | @golder.com                                                                               | Code:              | Reg                                 |                                            | Sample QAQC<br>Type Code<br>(over) (over)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 hvator  |      |      |      |      |      |      |          |      |      |      |     | Company                    | Waybill No.:         |
|                         | 600                                                                                       | EQUIS Facility Cor | □ 72 hr Other Color                 | 0::                                        | Time Sampled (HH:MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.50am     |      |      |      |      |      |      |          |      |      |      |     |                            |                      |
| Short Title:            | Golder E-mail Address 1:                                                                  | EQU                | ality 72 hr                         | Quote No                                   | bate Sampled (D/M/Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16/12/2    |      |      |      |      |      |      |          |      | y    |      |     | /: Signature               | ment:                |
| Shc                     | 10                                                                                        |                    | ☐ 48 hr<br>☐ BC Water Quality       |                                            | Sample Sample<br>Depth Matrix<br>(m) (over)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9M -       |      |      |      |      |      |      |          |      |      |      |     | Relinquished by: Signature | Method of Shipment:  |
|                         | Canada V5M 0C4<br>Fax (604) 298-5253                                                      | NNA                |                                     | ed by e-mail                               | Sa.#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1          |      |      |      |      |      |      | <i>z</i> |      |      |      |     |                            |                      |
| vay                     | Columbia, Can<br>6-4200 Fax                                                               | Kolowna            | ie:   24 hr                         | orts to be issue                           | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 840        | 0.1  |      | _    | .0   | 10   |      |          | 0    | 0    |      |     | 1                          | )                    |
| ZOU - COZU VIITUGI VYBY | Vancouver, British Columbia, Canada V5M 0C4<br>Telephone (604) 296-4200 Fax (604) 298-528 | Office Name:       | Turnaround Time:<br>Criteria:   CSR | Note: Final Reports to be issued by e-mail | Sample Control<br>Number (SCN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12411 - D1 | - 02 | - 03 | - 04 | - 05 | 90 - | - 07 | - 08     | 60 - | - 10 | - 11 | -12 | Sampler's Signature;       | Comments:            |

WHITE: Golder Copy YELLOW: Lab Copy

Shipment Condition: Seal Intact:

Shipped by:

Time

Date

Temp (°C) Codler opened by:



golder.com